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Abstract

Porlles López, David Fernando; Chen, Wei (Advisor). Optical de-
tection of quantum geometrical properties in singlet super-
conductors. Rio de Janeiro, 2024. 60p. Dissertação de Mestrado
– Departamento de Física, Pontifícia Universidade Católica do Rio
de Janeiro.

Quantum geometry in condensed matter physics allows us to understand
various geometric properties of the Brillouin zone states, such as the Berry
curvature and the quantum metric. Especially in relation to the latter, studies
have been observed that show its relationship with superconductivity. Moti-
vated by these investigations, this dissertation aims to investigate the quantum
geometric properties of singlet superconductors, such as s-wave and d-wave
types, and identify their relation to various electromagnetic responses. We be-
gin by showing the description of these superconductors through mean field
theory, subsequently analyzing their quantum metric, which is defined by the
overlap of two quasihole states at slightly different momenta. Subsequently,
we study the fidelity number, which is defined as the momentum integration
of the quantum metric and represents the average distance between neighbor-
ing quasihole states. Furthermore, we express this fidelity number as a fidelity
marker defined locally at each lattice site, which allows us to observe the effect
of non-magnetic impurities on this marker. For s-wave superconductors, we
show that electromagnetic responses such as infrared absorption are related
to the quantum metric, while on the other hand, the paramagnetic current
and the dielectric function are related to the fidelity number, which in turn
is determined by the coherence length. On the other hand, for d-wave super-
conductors, we observe that their quantum metric shows a singular behavior
and that their fidelity number diverges. The most relevant result of this dis-
sertation is that we have discovered that singlet superconductors, described by
the BCS mean field theory, exhibit a nontrivial quantum metric, and that for
s-wave superconductors the aforementioned electromagnetic responses are di-
rectly related to the quantum geometry, which has not been found previously.

Keywords
Superconductors; Infrared absorption; Quantum geometry; Paramagnetic

current; Dielectric function; High temperature superconductivit.



Resumo

Porlles López, David Fernando; Chen, Wei. Detecção óptica de
propriedades geométricas quânticas em supercondutores
singletos. Rio de Janeiro, 2024. 60p. Dissertação de Mestrado –
Departamento de Física, Pontifícia Universidade Católica do Rio
de Janeiro.

A geometria quântica na física da matéria condensada nos permite
entender várias propriedades geométricas dos estados da zona de Brillouin,
como a curvatura de Berry e a métrica quântica. Especialmente em relação
a esta última, foram observados estudos que mostram sua relação com a
supercondutividade. Motivados por estas investigações, esta dissertação visa
investigar as propriedades geométricas quânticas de supercondutores singletos,
como os tipos s-wave e d-wave, e identificar sua relação com várias respostas
eletromagnéticas. Começamos mostrando a descrição desses supercondutores
através da teoria do campo médio, posteriormente analisando sua métrica
quântica, que é definida pela sobreposição de dois estados de quasihole em
momentos ligeiramente diferentes. Subsequentemente, estudamos o número de
fidelidade, que é definido como a integração de momento da métrica quântica
e representa a distância média entre estados de quasihole vizinhos. Além
disso, expressamos esse número de fidelidade como um marcador de fidelidade
definido localmente em cada sítio da rede, o que nos permite observar o
efeito de impurezas não magnéticas nesse marcador. Para supercondutores
de tipo s-wave, mostramos que respostas eletromagnéticas como a absorção no
infravermelho estão relacionadas à métrica quântica, enquanto, por outro lado,
a corrente paramagnética e a função dielétrica estão relacionadas ao número de
fidelidade, que por sua vez é determinado pelo comprimento de coerência. Por
outro lado, para supercondutores de tipo d-wave, observamos que sua métrica
quântica mostra um comportamento singular e que seu número de fidelidade
diverge. O resultado mais relevante desta dissertação é que descobrimos que
supercondutores singletos, descritos pela teoria do campo médio BCS, exibem
uma métrica quântica não trivial, e que para supercondutores de tipo s-wave
as respostas eletromagnéticas mencionadas estão diretamente relacionadas à
geometria quântica, o que não havia sido encontrado anteriormente.

Palavras-chave
Supercondutores; Absorção infravermelha; Geometria quântica; Cor-

rente paramagnética; Função dielétrica; Supercondutividade de alta tempe-
ratura.
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1
Introduction

Quantum geometry holds significant relevance in condensed matter
physics, providing an understanding of various properties such as Berry phases,
quantum metric, among others. For the study of quantum geometry, we utilize
the quantum geometric tensor, the first notions of which were introduced in
1980 [1]. For this, we consider a Hamiltonian described by some parameter λ,
then the measure of the distance between two neighboring states |ψ(λ)⟩ and
|ψ(λ+ δλ)⟩ is given by

ds2 = 1 − |⟨ψ(λ)||ψ(λ+ δλ)⟩|2 =
∑
µν

Tµνdλ
µdλν , (1-1)

where Tµν is the quantum geometric tensor, which can be expressed as Tµν =
gµν − i

2Fµν [2, 3, 4]. The imaginary part of Tµν is antisymmetric and is related to
the Berry curvature Fµν = 2ImTµν , which is responsible for phenomena such as
Hall effects [5, 6], and related to electronic properties [5] and topological phases
of matter [7, 8]. On the other hand, the real part of this term is symmetric
and corresponds to the quantum metric gµν = Re[Tµν ], which also arises
equivalently from the following expression |⟨ψ(λ)|ψ(λ+δλ)⟩| = 1− 1

2gµνδλ
µdλν ,

for solids, we use momentum space hamiltonian and Bloch eigenstate to define
this quantum metric.

This quantum metric can also be related to various experimental mea-
sures [9, 10, 11, 12]. For example, there are investigations that show how to
relate the metric to optical responses by introducing a term called the quan-
tum metric spectral function gd

µν(k, ω) [13, 14, 15], where the superscript d
is because the system is considered to be “dressed ” by interactions. For the
case of a gap material, referred to as those materials that exhibit a gap in
their electronic structure, it is possible to relate the quantum metric spectral
function, that frequency-integrates to the quantum metric, with the exciton
absorption rate [13]. Also, the momentum integration of the quantum metric
spectral function gives us a term called the fidelity number spectral function
Gd

µν(ω), which is related to the frequency dependence of the optical absorption
rate [14].

Another closely related term is the fidelity number, which is defined as
the momentum integral of the quantum metric over a toroid TD. This toroid
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represents the D-dimensional Brillouin zone manifold, which physically rep-
resents the average distance between neighboring Bloch states in momentum
space. We can express this quantity in real space through the projection formal-
ism to define a fidelity marker at each lattice site, which allows us to study, for
example, the influence of impurities in real space on the quantum geometrical
properties [15].

On the other hand, it has also been found that the quantum metric is
related to topological order. This is a type of order that represents a certain
geometric property of the Bloch state in momentum space [16], and depending
on the dimension and symmetry of the system [17, 18, 19, 20]. This order
can manifest through different physical phenomena. In systems characterized
by a topological order derived from the integration of the Berry connection or
Berry curvature in momentum space, the determinant of the quantum metric is
related to these quantities [21, 22, 23, 24]. In relation to the aforementioned, it
has been found that in Dirac models, when the integration of a certain function
with respect to momentum result in a topological order, the modulus of that
function is equal to the determinant of the quantum metric. This relationship
has been called the metric-curvature correspondence [16]. Thus, as mentioned
earlier, the spectral quantum metric function that allows us to measure the
exciton absorption can also serve to reveal the topological order through this
correspondence.

Recent research in the field of superconductivity has begun to employ
concepts of quantum geometry to explain and predict behaviors in supercon-
ductors [25, 26, 27]. Before delving into these investigations, it is pertinent to
briefly discuss on superconductors.

Superconductors are classified into conventional and unconventional
types. On one hand, we have the conventional superconductors, which are
studied using the BCS theory and, due to the isotropic nature of the Cooper
pairs wave function, are known as s-wave superconductors. On the other hand,
we have the unconventional superconductors, which encompass all other types
of superconductors, such as those of the d-wave and p-wave types. However,
for a large number of materials, they can still be described by a weak coupling
mean field theory similar to the BCS theory.

Moreover, in recent years, it has been discovered the relationship between
the metric and flat band superconductors. This type of material exhibits a flat
band in its normal state, which is relevant because this type of superconduc-
tivity has been recently found in twisted bilayer graphene [28, 29]. The expla-
nation of how superconductivity arises in these materials is still under study;
however, there have been several investigations showing that the superfluid
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density in a flat band is proportional to the quantum metric [30, 31, 32].
Motivated by the aforementioned investigations on the relationship be-

tween the quantum metric with the exciton absorption rate in gap materials,
as well as the research on flat band superconductors regarding the relation-
ship between the superfluid density and the quantum metric, this dissertation
delves into the quantum geometric properties of the quasihole band in singlet
superconductors. It aims to study the quantum geometric properties of sin-
glet superconductors such as s-wave and d-wave superconductors, as well as to
observe if these properties are related to different electromagnetic responses.

As a significant outcome of our work, we have discovered that singlet
superconductors, described by the mean field BCS theory, exhibit a nontrivial
quantum metric, which furthermore is ubiquitously present in the electromag-
netic responses of s-wave superconductors. This constitutes a novel finding
that has not been previously identified. Additionally, a significant finding de-
rived from the study of s-wave type superconductors is the observation that
the fidelity number can be expressed as a function of the coherence length.
This allows us to establish an important conclusion in which the properties
linked to the coherence length also have a direct relationship with the fidelity
number.

This dissertation is organized as follows. In Chapter 2, we review su-
perconductivity, covering London’s theory, BCS theory, and singlet supercon-
ductors. In Chapter 3, we study the quantum geometric properties of singlet
superconductors such as the quantum metric, the fidelity number, and the fi-
delity marker. We will also see how these quantities behave in the case of an
s-wave and d-wave superconductor. In Chapter 4, we show how some electro-
magnetic responses, such as infrared absorption, paramagnetic current, and
the dielectric function, are related to some of the quantum geometric quanti-
ties seen in Chapter 3. In Chapter 5 we present the final conclusions as well as
the perspectives for future works.

Additionally, the dissertation is complemented with three appendices.
In appendix A, we show the form of the polarization operator for singlet
superconductors. In appendix B, we briefly explain the conductivity and the
dielectric function of a non-interacting electron gas. Finally, in appendix C, we
demonstrate how to obtain analytical expressions for some quantities of both
quantum geometry and electromagnetic responses for s-wave superconductors.
These appendices provide complementary information and several findings will
be used throughout the dissertation.



2
Superconductivity

In this chapter, we will conduct a review of superconductivity. Subse-
quently, we will discuss the BCS theory in more detail, showing the super-
conducting gap equation obtained through the Bogoliubov transformation. In
the final section, we will talk about singlet superconductors, such as those of
s-wave and d-wave types.

2.1
Brief introduction of Superconductivity

In 1908, Dutch physicist Heike Kamerlingh Onnes succeeded in liquefying
helium at a temperature of 4.1 K, thus enabling the study of the properties
of various metals at very low temperatures [33]. A few years later, in 1911,
Kamerlingh Onnes observed that the electrical resistance of Hg abruptly fell
to zero at a critical temperature of approximately 4.18 K [34]. This phase of
matter was subsequently named the superconducting state and was found in
other materials such as Sn, Pb, Tl [35].

In 1933, the Meissner effect was discovered by Walter Meissner and Rob-
bert Ochsenfeld [36]. This effect was observed experimentally and establishes
that superconductors behave as perfect diamagnets. This means that when a
material is in its superconducting phase and a magnetic field is applied, this
field is expelled from the material. Depending on whether the expulsion of the
field is total or partial, they can be classified as type I and II superconductors.

There were several attempts to explain the phenomenon of supercon-
ductivity. In 1935, the brothers Fritz and Heinz London developed the first
phenomenological theory of superconductivity [37]. This theory explains the
Meissner effect and predicts how far an external magnetic field can penetrate
a superconductor. Years later, in 1950, Vitaly Ginzburg and Lev Landau pro-
posed a phenomenological theory that expanded Landau’s phase transition
theory, applying it to superconductivity [38, 39]. This theory introduces an or-
der parameter that varies in space, with its variations and properties described
by a specific equation. This equation is fundamental in explaining the Meissner
effect, where superconductors expel magnetic fields upon cooling below their
critical temperature. Additionally, the Ginzburg-Landau theory is crucial for
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calculating fundamental properties like the critical temperature and critical
magnetic field, and it is notable for predicting the formation of superconduct-
ing vortices in Type II superconductors subjected to intense magnetic fields.

In 1950, due to several experimental works [40, 41], the isotopic effect
was discovered, this effect predicted that the superconductor transition tem-
perature would decrease with an increase in the average isotopic mass of the
material. The inverse relationship between the transition temperature and the
isotopic mass supports the idea that the electron-phonon interaction is es-
sential in superconductivity. The isotopic effect serves as key evidence that
phonons (quanta of lattice vibrations) are involved in the pairing of electrons
that form the superconducting state.

Currently, our theoretical understanding of superconductivity is largely
based on the microscopic BCS (Bardeen, Cooper, and Schrieffer) theory,
formulated in 1957 [42]. The role of the electron-phonon interaction in the
formation of these pairs is central in the BCS theory, thereby providing a
coherent explanation for the observed isotopic effect.

In the following sections, we will first delve into London’s theory, followed
by an exploration of the BCS theory, starting from the concept of Cooper pairs
and then advancing to calculations derived from this theory.

2.2
London’s theory

As mentioned earlier, one of the first theories to explain the phenomenon
of superconductivity was developed by the London brothers. This theory
describes the electromagnetic behavior of a superconductor [36].

In this theory, the existence of two independent types of electrons is
assumed: the so-called superconducting electrons, which move through the
superconductor without dissipation, and the normal electrons, which are
associated with energy dissipation in the form of electrical resistance.

The density of normal electrons will be denoted as nn, and that of
superconducting electrons as ns. The normal current density obeys Ohm’s
law

Jn = σnE. (2-1)
On the other hand, superconducting electrons when an electric field E is

applied have the following equation of motion

m
dvs

dt
= −eE, (2-2)

where e is the charge of the electron, m is the mass of the electron, and vs

is the velocity of the electron in the superconducting state. Furthermore, the
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current density is defined as

Js = −ensvs, (2-3)

differentiating it with respect to time and using the equation of motion we
have dJs

dt
= nse

2

m
E, (2-4)

this is the first London equation and indicates that in the presence of an electric
field a superconducting current is induced that varies over time and that the
current flows without resistance.

Now we calculate the time derivative of ∇×Js and considering Faraday’s
law of magnetic induction ∇ × E = −∂B/∂t, we obtain

d(∇ × Js)
dt

= −nse
2

m

∂B
∂t
, (2-5)

we proceed to integrate with respect to time, the London brothers to arrive
at the results of the Meissner effect postulated that the integration constant
should be zero obtaining

∇ × Js = −nse
2

m
B, (2-6)

this equation is the second London equation and describes how an applied
magnetic field induces a superconducting current on the surface of the material,
which in turn generates an opposing magnetic field that cancels the applied
magnetic field inside the superconductor explaining the Meissner effect.

2.3
BCS theory

In 1957, the BCS theory, named after its discoverers Bardeen, Cooper,
and Schrieffer, was formulated as the first theory to explain superconductivity
from a microscopic viewpoint [42]. This theory accurately predicts various
properties of superconductors. Furthermore, it serves as the foundation from
which the Ginzburg-Landau theory can be derived. Subsequently, we will delve
deeper into this theory.

The BCS theory is based on two bound electrons called Cooper pairs.
In the following section, I will address more about Cooper pairs. These
pairs form a collective quantum state that extends throughout the material.
The coherence of this collective quantum state is crucial, as it prevents the
scattering of electrons that would cause resistance in normal conductors.

Moreover, an energy gap forms at the Fermi level, known as the "super-
conducting gap". This gap represents an energy difference between the highest
state of the Cooper pairs and the lowest electronic state above the gap. In
other words, there is an energy region where no electronic states are available.
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The existence of this gap is crucial because it impedes certain types of electron
scattering that would cause resistance in a normal conductor.

2.3.1
Cooper Pairs

The concept of Cooper pairs, proposed by physicist Leon Cooper in
1956, represents a cornerstone in the understanding of superconductivity. This
concept is based on the idea that, under specific conditions, two electrons in a
superconductor can form a bound pair, overcoming their natural electrostatic
repulsion. The formation of Cooper pairs is governed by the Pauli exclusion
principle, requiring the total wave function to be antisymmetric under particle
exchange. This formation is possible through an interaction mediated by
phonons, which are quasiparticles representing the vibrations of the crystal
lattice in a solid. Physically, Cooper pairs are composed of two electrons with
opposite momenta and spins that, when coupled, can move together through
the conductor without resistance, a key feature of superconductivity.

In Cooper’s work [43], it is shown that Cooper pairs have a slightly lower
energy than individual electrons in the Fermi sea. This means that the normal
state, where electrons are uncoupled, becomes "unstable" in the sense that a
lower energy configuration is available, this is known as Cooper instability. In
the following section, we will explain how Cooper pairs are related to the BCS
theory.

2.3.2
BCS Hamiltonian

We will present the BCS Hamiltonian and subsequently diagonalize it
using the Bogoliubov transformation. The BCS Hamiltonian, expressed in
second quantization [44], is

HBCS =
∑
kσ

εkc
†
kσckσ +

∑
kk′

Vkk′c†
k↑c

†
−k↓c−k′↓ck′↑, (2-7)

where εk is the dispersion energy, Vkk′ is the effective interaction potential
between two electrons, c†

kσ (ckσ) creates (annihilates) an electron with momen-
tum k and spin σ. Now we are going to apply mean-field theory to decouple
the quartic operator and be able to diagonalize the Hamiltonian, obtaining

HMF
BCS =

∑
kσ

εkc
†
kσckσ +

∑
k

∆kc
†
k↑c

†
−k↓ −

∑
k

∆kc−k↓ck↑, (2-8)

where we can define the superconducting gap, which characterizes the super-
conducting state, as given by the following equation
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∆k = −
∑
k′
Vkk′⟨c−k′↓ck′↑⟩. (2-9)

Now we will show one way to diagonalize this Hamiltonian using the Bo-
goliubov transformation. This transformation involves the introduction of new
fermionic operators γ† and γ, which correspond to the creation and destruction,
respectively, of Bogoliubov quasiparticles. The matrix form of this transforma-
tion is expressed as follows ck↑

c†
−k↓

 =
 uk vk

−v∗
k u∗

k

 γk↑

γ†
−k↓

 , (2-10)

this unitary transformation is called the Bogoliubov-Valatin transformation.
After substituting this transformation into the mean-field BCS Hamiltonian,
it can be diagonalized if uk and vk have the following values

|uk|2 = 1
2

(
1 + ξk

Ek

)
and |vk|2 = 1

2

(
1 − ξk

Ek

)
, (2-11)

where Ek =
√
ξ2

k + ∆2
k. There is no loss of generality in choosing uk to be real

and positive, so we can express the Bogoliubov coefficients as follows

uk =

√√√√1
2

(
1 + ξk

Ek

)
and vk = Sgn(∆k)

√√√√1
2

(
1 − ξk

Ek

)
, (2-12)

where uk and vk satisfy the following relation: ukvk = ∆k/2Ek. After ap-
plying this transformation, we obtain the following Hamiltonian, ignoring the
constant term.

After this transformation, we obtain (ignoring the constant term) the
following Hamiltonian

HMF
BCS =

∑
k
Ek

(
γ†

k↑γk↑ + γ†
k↓γk↓

)
, (2-13)

these quasiparticles are called Bogoliubons in honor of the Bogoliubov trans-
formation that generates them. The Hamiltonian eq. (2-13) shows that the
excited states of the BCS Hamiltonian are non-interacting fermionic excita-
tions with energy Ek [45].

On the other hand, to calculate the superconducting gap, we use the
Bogoliubov transformation in the definition of the superconducting gap given
in eq. (2-9), obtaining the following expression

∆k = −
∑
k′
Vkk′

∆k′

2Ek′
[1 − 2nF (Ek′)] , (2-14)

where nF (Ek′) is the Fermi-Dirac distribution. Bogoliubons are free fermions
and therefore their distribution function follows the Fermi-Dirac distribution.
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The eq. (2-14) is called the gap equation and characterizes the superconducting
state since when ∆ = 0 it describes the normal state, whereas when ∆ ̸= 0 we
are in a superconducting state.

Next, we will describe some relevant equations of the BCS theory. First,
if we take the ratio between the gap at zero temperature ∆0 and the critical
temperature Tc, the value is approximately [46].

2∆0

kBTc

≈ 3.528, (2-15)

where kB is the Boltzmann constant. This is a distinctive feature of the BCS
theory, used experimentally to determine if a superconductor can be considered
within the framework of this theory.

Another relevant equation known in the BCS theory is the one related to
the coherence length, whose definition given by this theory is as follows [46]

ξ = ℏvF

π∆0
, (2-16)

where vF is the Fermi velocity and ∆ is the superconducting gap. This
quantity represents the spatial extension of a Cooper pair. For conventional
superconductors, the coherence length is on the order of 100 nm, which is
greater than the average distance between two electrons in a metal, meaning
physically there is a huge overlap between Cooper pairs [45, 47].

After discussing BCS theory and presenting some relevant equations, in
the following section, we will talk about singlet superconductors.

2.4
Singlet superconductors

Having reviewed BCS theory, now we will briefly comment on singlet
superconductors. In this type of superconductors, the spins of the two electrons
in the Cooper pair are antiparallel, so the total spin is zero. This differs
from triplet superconductors, where the spins are parallel. Among singlet
superconductors, we can find s-wave and d-wave superconductors, where we
refer to the orbital symmetry of the Cooper pair’s wave function. Now we will
mention some characteristics of these types of superconductors.

First, we will begin with s-wave superconductors, which are very well
described by the BCS theory. The superconducting gap they exhibit has
isotropic symmetry, which means its value is the same in all directions
in momentum space. This means that the Cooper pairs have zero angular
momentum and therefore have spherical symmetry. On the other hand, d-
wave superconductors have a superconducting gap that varies angularly, having
points in momentum space where its value is zero; these points are called nodes.
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This type of superconductors is characteristic of high-Tc superconductors
[48, 49], among them, those based on copper oxide (cuprate superconductors).

In the following, we will show the notation we will use for some parame-
ters of singlet superconductors in the dissertation. We will begin by expressing
the single-particle Hamiltonian of a mean field spin-singlet superconductor as
a Dirac Hamiltonian. To do this, we will start start from eq. (2-8) and express
it in its matrix form using |ψk⟩ =

(
c†

k↑, c−k↓
)†

, which is called the Nambu basis

HMF
BCS = (c†

k↑, c−k↓)
 εk ∆k

∆k −εk

 ck↑

c†
−k↓.

 , (2-17)

where the single-particle Hamiltonian is represented by

H(k) =
 εk ∆k

∆k −εk

 . (2-18)

We may represent this Hamiltonian as a 2 × 2 Dirac Hamiltonian

H(k) = d.σ = d1σ1 + d3σ3, (2-19)

where σi are the Pauli matrices, d1 = ∆k is the momentum dependent
superconducting gap, and d3 = εk is the normal state dispersion. Now we
proceed to define a unit vector

n ≡ d/|d| = (d1/d, d3/d) = (n1, n3) , (2-20)

where ±d = ±
√
d2

1 + d2
3 = ±Ek. After diagonalizing eq. (2-19) we find that

the filled quasihole eigenstate given by |n(k)⟩ ≡ |n⟩ with eigenenergy −Ek

and the empty quasiparticle eigenstate |m(k)⟩ ≡ |m⟩ with eigenenergy +Ek

are expressed in the following way

|n⟩ = 1√
2d(d− d3)

d− d3

−d1

 = Sgn(∆k)
 vk

−uk

 , (2-21)

|m⟩ = 1√
2d(d+ d3)

d+ d3

d1

 =
uk

vk

 , (2-22)

where uk and vk are the Bogoliubov coefficients eq. (2-12). For the study of the
quantum geometry of singlet superconductors, we have expressed the single-
particle Hamiltonian of the mean field spin-singlet superconductors in the form
of a 2 × 2 Dirac Hamiltonian. This was done because it is possible to use some
definitions of quantum metric for Hamiltonians that can be expressed in the
form of a Dirac Hamiltonian [16], as we will see in the next chapter.



3
Quantum geometry of singlet superconductors

In this chapter, we will review some quantities of quantum geometry
such as the quantum metric, the fidelity number, and the fidelity marker, to
subsequently focus on studying these quantities for singlet superconductors.
Additionally, we present a way to visualize this metric using a vector whose
components are the Bogoliubov coefficients. We find that for s-wave super-
conductors, their quantum metric is nontrivial. Furthermore, we express this
metric and the fidelity number analytically using a continuous model that
will be detailed in appendix C and observe the influence of impurities on the
quantum geometry through the fidelity marker. For the case of d-wave super-
conductors, we observe that their metric around the nodal points diverges,
leading to a divergence in their fidelity number as well.

3.1
Quantum geometry

The investigation of quantum geometry may be characterized by the
quantum geometric tensor [50, 51]. This quantity is derived by computing
the distance between two proximate states |ψ(k)⟩ and |ψ(k + δk)⟩ situated in
momentum space, as shown below

ds2 = 1 − |⟨ψ(k)|ψ(k + δk)⟩|2, (3-1)

the ds2 term is consistently positive, hence the Taylor expansion about δk = 0
lacks any first-order terms and begins with the quadratic term

ds2 =
∑
µν

Tµνδk
µδkν , (3-2)

where Tµν is the quantum metric tensor, which can be defined as follows

Tµν = ⟨∂µψ|∂νψ⟩ − ⟨∂µψ|ψ⟩⟨ψ|∂νψ⟩, (3-3)

where ∂µ = ∂/∂kµ. This quantum metric tensor can be reformulated as [52]

Tµν = gµν − i

2Fµν , (3-4)

the terms gµν and Fµν represent the quantum metric and the Berry curvature,
respectively, and they can be articulated as follows
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gµν = 1
2⟨∂µψ|∂νψ⟩ + 1

2⟨∂νψ|∂µψ⟩ − ⟨∂µψ|ψ⟩⟨ψ|∂νψ⟩, (3-5)

Fµν = i⟨∂µψ|∂νψ⟩ − i⟨∂νψ|∂µψ⟩. (3-6)
Since gµν represents the real part of Tµν and Fµν = −Fνµ, we can use equations
eqs. (3-1) and (3-2) to arrive at the following definition for the quantum metric

|⟨ψ(k)|ψ(k + δk)⟩| = 1 − 1
2gµνδk

µδkν . (3-7)
The eq. (3-7) indicates that if we take the modulus of a state |ψ(k)⟩ that
overlaps with itself at slightly different momenta and perform an expansion in
terms of small displacement δk, the result introduces a prefactor called gµν ,
which is the quantum metric. A very intuitive picture that allows us to visualize
this is fig. 3.1, where we have the unit vector |ψ(k)⟩ in the Hilbert space in some
basis |n1⟩, |n2⟩, and |n3⟩. This vector is pointing in some direction, and when
we move from k to k+δk, this unit vector will rotate to a different direction in
the Hilbert space. If we now take the product between these two unit vectors,
the result must be less than one. Hence, if an expansion is performed, the
correction should give us the quantum metric.

Figure 3.1: Representation of how a unit vector |ψ(k)⟩ in the Hilbert space
in some basis |n1⟩, |n2⟩, and |n3⟩ rotates as we move from k to k + δk. This
Figure was created by the author.

Now we will demonstrate the calculation of the quantum metric in
systems that have a band gap, such as insulating or superconducting systems.
We will use n for valence bands, m for conduction bands, and l for all bands.
The Bloch states of each band are expressed as [15, 53]

|lk⟩ =
∑
R
e−ik·( ˆr−R)|Rl⟩, (3-8)

|Rl⟩ =
∑

k
eik·(r̂−R)|lk⟩, (3-9)

where the wavefunctions in the position r are denoted by ⟨r|Rn⟩ = Wn(r−R),
which correspond to Wannier functions that are highly localized around the
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home cell R.
We assume that N− (N+) are the Bloch functions of occupied (unoc-

cupied) states for each k. In this case, the fully antisymmetric valence-band
Bloch state at momentum k is

|uval(k)⟩ = 1√
N−!e

na1 na2 ...naN−
k|nk

a1⟩|nk
a2⟩ . . . |nk

aN−
⟩, (3-10)

where |nk
a⟩ forms a basis for the N− filled bands. Now we will proceed to study

the quantum metric of this state |uval(k)⟩ using the definition given in eq. (3-7),
we have

|⟨uval(k)|uval(k + δk)⟩| = 1 − 1
2gµνδk

µδkν . (3-11)
Then, we can express the metric in the following way

gµν = 1
2⟨∂µu

val|∂νu
val⟩ + 1

2⟨∂νu
val|∂µu

val⟩ − ⟨∂µu
val|uval⟩⟨uval|∂νu

val⟩. (3-12)

It is possible to express this metric in terms of one-particle states [16]

gµν(k) = 1
2
∑

a

(⟨∂µua|Q+|∂νua⟩ + ⟨∂µua|Q+|∂νua⟩) , (3-13)

where Q+ (Q−) is the projector on the positive (negative) eigenstates

Q± ≡
N±∑
a=1

|u±
a ⟩⟨u±

a |, (3-14)

which satisfy that Q+ + Q− = 1. Physically, eq. (3-12) measures how much
the state |uval⟩ has rotated from momentum k to k + δk in the Hilbert space
of N−-particles.

3.1.1
Fidelity number

Another relevant geometric quantity is the fidelity number. Before defin-
ing it, it is crucial to mention that the Brillouin zone in a dimension D can be
considered as a toroid TD from a differential geometry perspective. Then, it
can be inferred that by integrating the quantum metric over momentum space
on the toroid TD

Gµν =
∫ dDk

(2π)D
gµν(k), (3-15)

represents the average distance between neighboring Bloch states, |ψ(k)⟩ and
|ψ(k + δk)⟩; this new quantity may be considered an intrinsic property of the
quantum geometry, and is referred to as the fidelity number [15].
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3.1.2
Fidelity marker

Now, we will briefly demonstrate how we can map the fidelity number
onto the lattice sites in real space [15]. Starting from the definition of the
fidelity number and using the defined metric, we can obtain the following
relationship.

Gµν = 1
2ℏ2

∫ dDk
(2π)D

⟨ψnk|µ̂|ψmk⟩⟨ψmk|ν̂|ψnk⟩ + (µ ↔ ν),

Gµν = ℏD−2

2aD

∫ dDk
(2π)D

dDk′

(2π)D
⟨ψnk|µ̂|ψmk′⟩⟨ψmk′ |ν̂|ψnk⟩ + (µ ↔ ν), (3-16)

in which ⟨r|ψnk⟩ = eik·r/ℏ⟨r|n(k)⟩ is the full quasihole state wave function (and
likewise for |m(k)⟩), and we have employed the following identity [54, 55]

i⟨m|∂µn⟩ = 1
ℏ

⟨ψmk|µ̂|ψnk′⟩. (3-17)

Returning to eq. (3-16), we can observe that it may be related to the projection
operators of the valence and conduction band states, given, respectively, as

P̂ =
∑

n

∫ dDk
(2π)D |ψnk⟩⟨ψnk|, (3-18)

Q̂ =
∑
m

∫ dDk′

(2π)D |ψmk′⟩⟨ψmk′ |. (3-19)

Now considering a tight-binding Hamiltonian expressed in second quantization
H = ∑

rr′σσ′ trr′σσ′c†
rσcr′σ′ , where t is the hopping term and r labels the lattice

sites. We proceed with the diagonalization of this Hamiltonian H|El⟩ = El|El⟩,
thereby obtaining the eigenstates |El⟩ along with the corresponding eigenvalues
El. Proceeding with an analogous definition of projectors, defined in eqs. (3-18)
and (3-19), we can define the projectors using the eigenstates |El⟩ as follows

P̂ =
∑

n

|En⟩⟨En|, (3-20)

Q̂ =
∑
m

|Em⟩⟨Em|. (3-21)

Using these projectors, we can be reformulated the fidelity number as

Gµν = 1
2Tr

[
P̂ r̂µ Q̂ r̂νP̂ + (µ ↔ ν)

]
, (3-22)

Gµν = 1
N

∑
r

Gµν(r), (3-23)
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where r̂µ and r̂ν represent the position operators on the lattice. The trace in
this expression is taken over the lattice sites r, and each term in the summation
delineates what we will refer to as the fidelity marker

Gµν(r) ≡ ℏD−2

2aD
⟨r|
[
P̂ r̂µ Q̂ r̂ν P̂ + P̂ r̂ν Q̂ r̂µ P̂

]
|r⟩. (3-24)

The relevance of this last equation is that, by being the projection of the fidelity
number at each site of the lattice, we can obtain information about the average
distance between neighboring quasihole states |n(k)⟩ and |n(k + δk)⟩ in real
space. In the following sections, we shall see how the fidelity marker can be
used to characterize the influence of real space inhomogeneity on the quantum
geometry.

3.2
Quantum geometry of s-wave superconductors

Having reviewed quantum geometry, we now focus first on the quantum
metric gµν(k) of the filled quasihole state |n(k)⟩ of s-wave superconductors.
Using the expression eq. (3-7) for the filled quasihole state, we obtain the
following equation

|⟨n(k)|n(k + δk)⟩| = 1 − 1
2gµνδk

µδkν . (3-25)

Now, using the definition given in eq. (3-13) applied to this type of supercon-
ductors we have that the metric can be expressed in the following way

gµν(k) = 1
2 [⟨∂µn|m⟩⟨m|∂νn⟩ + ⟨∂νn|m⟩⟨m|∂µn⟩] , (3-26)

using the expressions eqs. (2-21) and (2-22) in eq. (3-26), we arrive at the
following expression

gµν(k) = (uk∂µvk − vk∂µuk)(uk∂νvk − vk∂νuk). (3-27)

Now, because the single-particle Hamiltonian of singlet superconductors can be
expressed as a Dirac Hamiltonian, we can have another equivalent expression
for the quantum metric [16] which is

gµν = 1
4∂µn · ∂νn, (3-28)

where n is the unit vector given by eq. (2-20). Using the definition of this unit
vector and after some algebra, we have

gµν = 1
4d4 (d3∂µd1 − d1∂µd3)(d3∂νd1 − d1∂νd3). (3-29)

To calculate the quantum metric of singlet superconductors, both eq. (3-27)
and eq. (3-29) can be used. Now we will focus on s-wave superconductors where
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we have that d1 = ∆ is a constant and the derivative of the dispersion of the
normal state is ∂µd3 = ∂µεk = vµ(k) ≡ vµ which is the group velocity of the
normal state along the direction µ with momentum k. Then, the quantum
metric, using eq. (3-29), is

gµν = ∆2vµvν

4E4
k
, (3-30)

which represents the quantum metric of the filled quasihole state |n(k)⟩ for
s-wave superconductors. To visualize this metric, one can make use of its
relationship with the Bogoliubov coefficients. This is because we define the
quantum metric of the filled quasihole state, and this state is connected to
the Bogoliubov coefficients as noted in eq. (2-21). Consequently, we define the
unitary vector field in D-dimensional k-space as wk = (vk,−uk), where vk and
−uk are the Bogoliubov coeffient

|⟨n(k)|n(k + δk)⟩| = |wk · wk+δk|. (3-31)

By substituting eq. (3-31) into eq. (3-25), we obtain
1
2gµνδk

µδkν = 1 − |wk · wk+δk|. (3-32)

The equation above indicates that as the product |wk ·wk+δk| deviates further
from unity, the metric’s value increases. Alternatively, this can be understood
in terms of how much the unit vector in the Hilbert space wk "twists" when
transitioning from k to k + δk.

To show the results obtained from the quantum metric, we will consider
the dispersion energy of a D-dimensional cubic lattice using a tight-binding
model [56] with nearest-neighbor hopping t and chemical potential µ expressed
in the following way

εk = −2t
D∑

i=1
cos ki − µ. (3-33)

Then, to calculate the quantum metric gxx for a lattice in 2D and 3D, we
will use eq. (3-30) and will set the hopping t = 1, the chemical potential
µ = −0.2t, and the gap ∆ = 0.5t, we have used these values solely for the
purpose of visualizing the shape of the quantum metric, obtaining as a result
the figs. 3.2 and 3.3 which will be described below.

In fig. 3.2 (a), we show the vector field of wk = (vk,−uk) defined
using the Bogoliubov coefficients, as discussed in section 3.2, in 2D. We can
observe that near the Fermi surface (red dashed line in fig. 3.2 (b)), this vector
field has a very strong twisting. This is because below the Fermi surface, the
eigenstates are predominantly electronlike, and above the Fermi surface, they
are predominantly holelike, resulting in a strong twisting at the Fermi surface.
Correspondingly, as observed in fig. 3.2 (a), we see a huge quantum metric gxx

at the Fermi surface in fig. 3.2 (b). It should also be noted that both figures
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show the first quadrant of the Brillouin zone.

Figure 3.2: In (a), the vector field given by the vector w = (vk,−uk) for a
2D s-wave superconductor in the first quarter of the Brillouin zone is shown.
We observe that the region where this vector changes its direction indicates
the region where the quantum metric gxx is different from zero as seen in (b).
Additionally, we observe that the metric reaches its maximum near the Fermi
surface (dashed line). This Figure has been taken from Ref. [57].

In a manner equivalent to the 2D case, in fig. 3.3(a) we show the vector
field of wk = (vk,−uk) in 3D where, for better visualization, only the vector
field for kz = 0, π/2, π has been chosen. We see that the behavior is the same
as in the 2D case because the regions where the vector field changes direction
are the same where gxx shows a peak in its value fig. 3.3(b).

In conclusion, these two figs. 3.2 and 3.3 illustrate the shape of the
quantum metric for s-wave superconductors, as well as a way to visualize
this metric through a vector wk = (vk,−uk) formed with the Bogoliubov
coefficients.

3.2.1
Fidelity number of s-wave superconductors

For the 2D case, the calculations to obtain the analytical expression of
G2D

µµ are shown in appendix C, here we will only show the final expression

G2D
µµ =

∫ d2k
(2π)2 gµµ, (3-34)

G2D
µµ = π2

8
√

2

(
ξ

a

)(
kF

2πℏ/a

)
, (3-35)

where we see that it is a dimensionless number, the expression kF/(2πℏ/a) is
of the order of unity so the relevant part is represented by the coherence length
divided by the lattice constant ξ/a.
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Figure 3.3: (a) Shows the vector field of the vector w = (vk,−uk) for
kz = 0, π/2, π, in order to have a better visualization, where we observe the
same behavior as in the 2D case. This is because the regions where the vector
w changes direction are the regions where the quantum metric reaches its
maximum as shown in (b). This Figure has been taken from Ref. [57].

On the other hand, for the 3D case, we have that its analytical expression
is derived in appendix C, we will only show here its final expression which is

G3D
µµ =

∫ d3k
(2π)3 gµµ, (3-36)

G3D
µµ = π2

6
√

2

(
ξ

a

)(
kF

2πℏ/a

)2 (ℏ
a

)
, (3-37)

this last expression tells us that the fidelity number in 3D depends to a greater
extent on the coherence length divided by the lattice constant ξ/a times ℏ/a
since the expression kF/(2πℏ/a) is of the order of unity.

Thus, we observe that the fidelity number for s-wave superconductors in
2D and 3D, given by eqs. (3-35) and (3-37), is directly related to the coherence
length. Consequently, we can arrive at two very important conclusions. The
first is that we can have another interpretation of the coherence length within
quantum geometry, which can be understood as the measure of the average
distance between neighboring quasihole states across the entire Brillouin zone.
The second is that if any property in this type of superconductors is related
to the coherence length, then it can also be related to the fidelity number.

3.2.2
Fidelity marker of s-wave superconductors

Now, we will proceed to study the effect of a nonmagnetic impurity on
the fidelity marker in s-wave superconductors. For the calculation of the fidelity
marker, similarly to what was explained in section 3.1.2, we first consider a
lattice Bogoliubov-de Gennes (BdG) Hamiltonian HBdG. Then, we consider a
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nonmagnetic on-site impurity U , which we place at the center of the lattice to
observe how the fidelity marker is locally modified. We proceed to diagonalize
the Hamiltonian with the on-site impurity H|El⟩ = El|El⟩, obtaining the filled
En < 0 and empty Em > 0 lattice eigenstates. Now, using these eigenstates
to construct the projectors in eqs. (3-20) and (3-21) and subsequently using
eq. (3-24), we can calculate the fidelity marker for s-wave superconductors.

Next, we will show the results obtained for the effect of the impurity on
the fidelity marker in s-wave superconductors in both 2D and 3D. For the 2D
case, we have fig. 3.4, where fig. 3.4(a) shows the fidelity marker at each site
of a square lattice, where a nonmagnetic impurity U = 2t has been placed at
the center of the lattice. Meanwhile, for fig. 3.4(b), a nonmagnetic impurity
U = 1000t has been considered. We observe that by increasing the value of the
nonmagnetic impurity, the fidelity marker locally decreases.

Figure 3.4: (a) Shows the fidelity marker for a 2D s-wave superconductor,
where a nonmagnetic impurity has been introduced at the center of the lattice
with U = 2t, observing that the largest circle represents a magnitude of 0.433
and that the marker decreases due to the impurity. For (b), a nonmagnetic
impurity with U = 1000t has been considered; in this case, the largest circle
corresponds to a value of 0.474, where we observe that due to the value of the
impurity, the fidelity marker is practically zero. This Figure has been taken
from Ref. [57].

On the other hand, we have the 3D case, which is depicted by fig. 3.5.
Here, fig. 3.5(a) shows the fidelity marker at each site of a cubic lattice, where
a nonmagnetic impurity U = 2t has been introduced at the center of the
lattice, while fig. 3.5(b) considers a scenario where a nonmagnetic impurity
U = 1000t has been introduced. We observe equivalent results to the 2D case,
where we see that the nonmagnetic impurity decreases the fidelity marker
locally. Physically, this indicates for both dimensions that this type of impurity
reduces the average distance between quasihole states in momentum space.

We can conclude from what is observed in both figs. 3.4 and 3.5 that the
nonmagnetic impurity locally suppresses the fidelity marker, indicating that
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Figure 3.5: (a) Shows the fidelity marker for a 3D s-wave superconductor
where a nonmagnetic impurity U = 2t has been introduced, the largest sphere
represents a value of 0.332. (b) In this case, a nonmagnetic impurity U = 1000t
was considered, and the largest sphere corresponds to 0.339. We observe that
the results are equivalent to the 2D case, where the nonmagnetic impurity
decreases the fidelity marker. This Figure has been taken from Ref. [57].

disorder affects the quantum geometry in this type of superconductors.

3.3
Quantum geometry of d-wave superconductors

In this section, we will study the quantum geometry of d-wave super-
conductors. For this type of superconductors, we will consider the framework
of the BCS theory, using the mean-field theory, because some works related
to cuprate superconductors indicate that we can make these considerations in
certain regions of their phase diagram related to doping [58, 59, 60].

We will proceed in a similar manner to what we did for s-wave supercon-
ductors, calculating the quantum metric and the Bogoliubov coefficients for
this type of superconductors. For the calculation of the quantum metric, we
start from Equation 3-29, for the superconducting gap d1 = ∆k we will express
it as [60]

∆k = 2∆0(cos kx − cos ky). (3-38)
On the other hand, for the dispersion energy of the normal state d3 = εk we
will use a tigh-binding model for a 2D lattice and in order to examine a more
real system we will take into account second neighbors obtaining

εk = −2t(cos kx + cos ky) + 4t′ cos kx cos ky − µ. (3-39)

Replacing both the eqs. (3-38) and (3-39) into the eq. (3-29) we have the
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quantum metric for d-wave superconductors having the following form

gµν = eµeν , (3-40)

ex = ∆0

E2
k

sin kx

(
4t cos ky − 4t′ cos2 ky + µ

)
, (3-41)

ey = ∆0

E2
k

sin ky

(
−4t cos kx + 4t′ cos2 kx − µ

)
. (3-42)

For the numerical calculation of the quantum metric, we will use the following
parameter values (in units of eV): t = 0.15, t′ = 0.04, and µ = −0.13.
These values are optimal for the optimally doped to slightly overdoped
superconducting cuprate Bi2Sr2CaCu2O8+x [60] and we use a larger value of the
gap, ∆0 = 0.1, purely to demonstrate the momentum profile of the quantum
metric.

For the case of the Bogoliubov coefficients of d-wave superconductors,
we use the expressions previously shown in Equation eq. (2-12) and replace
the dispersion energy of the normal state and the d-wave superconducting gap
given by Equations eq. (3-38) and eq. (3-39), respectively.

Considering the equations and parameter values mentioned above, we
obtain both fig. 3.6(a) and (b), which are both in the first quadrant of the
Brillouin zone. In fig. 3.6(a), we show the vector field given by the unit
vector (uk, vk), formed with the Bogoliubov coefficients, where we observe the
formation of a vortex around the nodal point. As mentioned earlier, the vector
wk represents the quasihole state as a unit vector in Hilbert space, so the vortex
indicates that the quasihole state rotates dramatically in Hilbert space around
the nodal point. This is consistent with what is observed in fig. 3.6(b), which
shows how a pair of maxima of the metric appear around the nodal point.
For better visualization of these maxima, we restrict the value of the metric
since its value diverges at the nodal point. Next, we will show how we can
capture this divergence through its equation. To better visualize the profile of
the quantum metric, we will make the following consideration t′ = µ = 0 where
the nodal point is located at k0 = (π/2, π/2). Thus, an analytical expression
for the quantum metric around the nodal point k = k0 + δk, which we will
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Figure 3.6: (a) The vector field of the vector wk for d-wave superconductors
in 2D in the first quarter of the Brillouin zone is shown. We can observe that
the vectors form a vortex around the nodal point. This is consistent with what
is observed in (b), where the quantum metric shows singular behavior at the
nodal point, and two maxima appear around this point. This Figure has been
taken from Ref. [57].

call the bare quantum metric gµν , has the following form:

gxx ≈
∆2

0t
2δk2

y[
(t2 + ∆2

0)(δk2
x + δk2

y) + 2(t2 − ∆2
0)δkxδky

]2 ,
gyy ≈ ∆2

0t
2δk2

x[
(t2 + ∆2

0)(δk2
x + δk2

y) + 2(t2 − ∆2
0)δkxδky

]2 ,
gxy ≈ −∆2

0t
2δkxδky[

(t2 + ∆2
0)(δk2

x + δk2
y) + 2(t2 − ∆2

0)δkxδky

]2 , (3-43)

where we can observe in each of the equations that as we approach the nodal
point in both directions δkx, δky → 0, their value diverges.

Next, we will calculate the fidelity number for d-wave superconductors.
First, we will make a change to polar coordinates for the bare quantum metric,
to subsequently perform an integration in polar coordinates which would help
us observe the behavior of the fidelity number due to its definition in eq. (3-15).
The bare quantum metric, given by section 3.3, making the change to polar
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coordinates (δkx, δky) = (k cos θ, k sin θ) has the following form

gxx ≈ 1
k2 × ∆2

0t
2 sin2 θ

[(t2 + ∆2
0) + (t2 − ∆2

0) sin 2θ]2
,

gyy ≈ 1
k2 × ∆2

0t
2 cos2 θ

[(t2 + ∆2
0) + (t2 − ∆2

0) sin 2θ]2
,

gxy ≈ 1
k2 × −∆2

0t
2 sin θ cos θ

[(t2 + ∆2
0) + (t2 − ∆2

0) sin 2θ]2
, (3-44)

where it is possible to notice that upon performing the polar integration, we see
that the result diverges logarithmically. Therefore, for d-wave superconductors,
we obtain that the fidelity number diverges, due to the behavior of the
quantum metric around the nodal points, which physically indicates that the
average distance between Bloch states in the Brillouin zone for this type of
superconductors diverges.



4
Electromagnetic responses in singlet superconductors and
their relationship with quantum geometry

In this chapter, we will study the electromagnetic responses for the case
of singlet superconductors, demonstrating the relationship of these responses
with quantum geometry for the case of s-wave superconductors. It is important
to highlight that the calculations will be performed for both 2D and 3D lattices.
Regarding the electromagnetic responses, we will analyze infrared absorption,
paramagnetic current, and linear screening, obtaining such electromagnetic
responses expressed in terms of coherence factors for the case of singlet
superconductors. To study the relationship with quantum geometry with
these responses, we will focus solely on s-wave superconductors, since for d-
wave superconductors, as observed in the previous chapter, their quantum
metric exhibits singular behavior around the nodal points and their fidelity
number diverges. Hence, considering the case of s-wave superconductors, we
will make certain approximations to the coherence factors that will allow us to
relate it to quantum geometry and subsequently express the electromagnetic
responses analytically using a continuous model, which is explained in detail
in appendix C, obtaining as a relevant result that these responses are related
to quantum geometry through the quantum metric and the fidelity number.

4.1
Infrared absorption in singlet superconductors

In this section, we will calculate the infrared absorption in singlet
superconductors, as we demonstrated in appendix B, the infrared absorption
corresponds to the real part of the conductivity eq. (B-16), which can be
expressed, after a Fourier transform of eq. (B-16), as follows

Reσ(q, ω) = 1
ω

Im [π(q, ω)] , (4-1)

where π(q, ω) is the current-current correlator. Before proceeding with the
corresponding calculations, we will define the conditions of the system.

Let’s assume that we have a singlet superconductor, which is subjected to
a transverse electromagnetic wave polarized in the direction µ̂ and propagating
in the direction ν̂, with a small wave vector q = qν̂ , in such a way that both are
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perpendicular. In accordance with what was mentioned in appendix B.1, the
perturbative Hamiltonian in D-dimensions due to this electromagnetic wave is
expressed as

H ′ = −aDjµ(q)Aµ(q, t), (4-2)
where Aµ(q, t) = ∑

r Aµ(r, t)eiq·r is the Fourier transform of the time-
dependent vector field polarized along µ̂. The term jµ(q) represents the current
density operator and is given by the following expression

jµ(q) = e

aD

∑
k

vµ(k)c†
k+qσckσ, (4-3)

where the term vµ(k) = ∂µεk is the group velocity of the normal state at k,
with εk being the normal state dispersion. In order to calculate eq. (4-1), we
proceed by defining the Matsubara current-current correlator as

π(q, iω) = −aD

ℏ

∫ β

0
dτ eiωτ ⟨Tτjµ(q, τ), jµ(−q, 0)⟩. (4-4)

We can express π(q, iω) in terms of the polarization operator, defined in eq. (A-
1), as follows

π(q, iω) = e2

aD

∑
k

v2
µP (k,q, iω). (4-5)

Continuing with the application of the analytical continuation πµν(q, ω) =
πµν(q, iω → ℏω + iη), we have

π(q, ω) = e2

aD

∑
k

v2
µP (k,q, ω). (4-6)

Since we are considering the case of zero temperature, we can use the expression
for the polarization operator P0(k,q, ω), calculated in appendix A, given by
eq. (A-13). We can now calculate the conductivity σµµ(q, ω) ≡ σ(q, ω) along
the polarization direction µ̂. As we are interested in infrared absorption, we
must calculate Im [π(q, ω)], for which we proceed to use eq. (4-6) considering
only the imaginary part of P0(k,q, ω), given by eq. (A-14). Subsequently, we
replace Im [π(q, ω)] in eq. (4-1), obtaining after a momentum integration

Reσ(q, ω) = 2πe2

ω

∫ dDk
(2πℏ)D

v2
µ

[
u2

k+qv
2
k − ukvkuk+qvk+q

]
δ(ℏω − Ek − Ek+q).

(4-7)
Thus, the expression above allows us to calculate infrared absorption. Finally,
the expression eq. (4-7) contains a coherence factor given by the terms u2

k+qv
2
k−

ukvkuk+qvk+q, which will be discussed later for s-wave superconductors.

4.2
Paramagnetic current in singlet superconductors

The London equation in the presence of a static field vector with wave
vector q = qν̂ is expressed as follows [61]
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Jµ = Jµ1 + Jµ2, (4-8)

where it is expressed in the London gauge, and we also observe that it agrees
with what is seen in appendix B.1. In eq. (4-8), the term Jµ2 represents the dia-
magnetic current, which is used in London’s theory, as seen in section 2.2, and
therefore is associated with the Meissner effect, and Jµ1 is the paramagnetic
current, so named because it tends to cancel out the diamagnetic current Jµ2

[61]. We will focus on the calculation of the paramagnetic current in the pres-
ence of a static vector field. Linear response theory assumes that the system’s
response Jµ1 is proportional to the perturbation given by the static vector field,
and the proportionality constant is given by K1 as follows

Jµ1 = −K1(q)Aµ(q), (4-9)

where K1 is the response coefficient associated with the paramagnetic current
and Aµ(q) is the Fourier component of the time-independent vector field
polarized along µ̂. Since this term is a static response, it relates to the real
part of the Matsubara current-current correlator

K1(q) = Reπ(q, 0)|T =0. (4-10)

Thus, to calculate K1(q), we have to use eq. (4-6) considering only the real
part of the polarization operator and the limit ω = 0

Re π(q, 0)|T =0 = e2

aD

∑
k
v2

µ ReP0(k,q, 0). (4-11)

Next, we replace eq. (A-15) into eq. (4-11), which leads us to obtain the
coefficient response expressed as follows

K1(q) = −2e2
∫ dDk

(2πℏ)D
v2

µ

(uk+qvk − vk+quk)2

Ek + Ek+q
. (4-12)

We observe that this last expression contains the following coherence factor
(uk+qvk − vk+quk)2, which as we will show later is related to the quantum
metric for s-wave superconductors.

4.3
Linear screening in singlet superconductors

We are interested in studying screening for the case of ω = 0 in singlet
superconductors. Then, we will calculate the static dielectric function ε(q, 0).
Considering what is shown in appendix B and the definition given for the
polarization operator in eq. (A-1), we can express the static dielectric function
as follows

ε(q, 0) = 1 − VqP0(q, 0), (4-13)
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where V (q) = ∑
r e

iq·rV (r) is the Fourier transform of the Coulomb potential.
On the other hand, the term P0(q, 0) is defined as follows

P0(q, 0) =
∫ dDk

(2πℏ/a)D
ReP0(k,q, 0), (4-14)

where we observe the term ReP0(k,q, 0), which we have calculated in ap-
pendix A. So, by replacing eq. (A-14) into eq. (4-14), we obtain

P0(q, 0) = −2
∫ dDk

(2πℏ/a)D

(uk+qvk − vk+quk)2

Ek + Ek+q
. (4-15)

We can verify that the expression above has the same coherence factor as in
the case of the paramagnetic current, hence we will later show how P0(q, 0) is
related to the quantum metric for s-wave superconductors.

4.4
Electromagnetic responses in s-wave superconductors

As previously analyzed, electromagnetic responses such as infrared ab-
sorption, the paramagnetic current, and the dielectric function are related to
coherence factors. We will now focus on the relationship between these coher-
ence factors and the quantum metric for the case of s-wave superconductors,
considering some approximations that will be detailed below.

Approximation of coherence factors

In s-wave superconductors, the superconducting gap is of the order
∆ ∼ 0.01 eV, so the minimum wave vector of light that can excite quasiparticles
is much smaller than the Fermi momentum q ≪ kF . This allows us to expand
the coherence factors in terms of q to the first or second order as we will do
below.

For the case of infrared absorption, we will expand the coherence factor
up to second order in q = qν̂, which we obtain in eq. (4-7), obtaining

u2
k+qv

2
k − ukvkuk+qvk+q ≈ (qukvk + q2vk∂νuk)(vk∂νuk − uk∂νvk)

=
(
q∆
2Ek

+ q2∆3vν

4(Ek + εk)E3
k

)
∆vν

2E2
k
. (4-16)

On the other hand, in the case of the paramagnetic current and the dielectric
function, we will expand the coherence factor that appears in both eqs. (4-12)
and (4-15), obtaining

(uk+qvk − vk+quk)2 ≈ q2(vk∂νuk − uk∂νvk) = q2gνν , (4-17)
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where we observe the appearance of the diagonal element of the quantum met-
ric gνν along q. We proceed to use these approximations given by eqs. (4-16)
and (4-17) to calculate the electromagnetic responses for s-wave superconduc-
tors.

Infrared absorption in s-wave superconductors

For infrared absorption in 3D, we will use eq. (4-7) in which we will
replace eq. (4-16) and, due to the argument made in section 4.4, we can use the
following approximation for the argument of the δ-function ℏω−Ek −Ek+q ≈
ℏω− 2Ek. Additionally, as we saw, eq. (4-16) is composed of a first-order term
and another in second order in q = qν̂, so for the first order we have

Reσ1st(q, ω) ≈ πe2ℏq
∫ d3k

(2πℏ)3 gµµvνδ(ℏω − 2Ek), (4-18)

resulting in zero due to the even parity of the metric gµµ and the odd parity
of the normal state group velocity vν . On the other hand, for the second-order
term, we have

Reσ2nd(q, ω) ≈ 2πe2ℏq2

2m

∫ d3k
(2πℏ)3

[
mv2

ν∆2

E2
k(Ek + εk)

]
gµµδ(ℏω − 2Ek). (4-19)

Thus, we see that the quantum metric appears in the integrand of this second
order term, but with an extra factor that depends on the energy, gap, and
velocity due to the Bogoluibov transformation. For the 2D case, we need to
reduce the dimension of the integral from eq. (4-19) in the following manner∫
d3k/(2πℏ)3 →

∫
d2k/(2πℏ)2, where it can be observed that the quantum

metric appears in the integrand along with other parameters as in the 3D
case.

Paramagnetic current in s-wave superconductors

For the paramagnetic current, we need to calculate the response coef-
ficient K1 given by eq. (4-12) where we will replace eq. (4-17) and use the
following approximation Ek + Ek+q ≈ 2Ek, resulting in

K3D
1 (q) ≈ −e2q2

∫ d3k
(2πℏ)3v

2
µ

gνν

Ek
, (4-20)
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where the analytical expression of this equation, which is calculated in ap-
pendix C, is given by the following equation

K3D
1 (q) = −e2 4π6f(α)√

10ma3

(
ξ

a

)2 (
q

2πℏ/a

)2 (
kF

2πℏ/a

)3

, (4-21)

f(α) ≡ 4
15 + 2

15 cos2 α,

where α is the angle between the propagation direction µ̂ and the polarization
ν̂. The factor [kF/(2πℏ/a)]3 can be considered as the volume of the Fermi sea
measured in units of the Brillouin zone, q/(2πℏ/a) is the spatial modulation of
the vector field measured in units of Fermi momentum, and e2/ma3 provides
the correct units.

Using eq. (3-37) in eq. (4-21), we can arrive at the following expression

K3D
1 (q) = −288π2

√
10

f(α)e2

ma3

(
q

2πℏ/a

)2 (
kF

2πℏ/a

)−1 (G3D
νν

ℏ/a

)2

. (4-22)

This implies that the coefficient K3D
1 (q) is determined by the coherence length,

which is synonymous with the fidelity number. We also observe that it has a
quadratic dependence on q, which has been previously found in the literature
[61]. On the other hand, when calculating the expression for K1(q) in the 2D
case, as seen in appendix C.2, we have

K2D
1 (q) = −2π5e2f(α)√

10ma2

(
q

2πℏ/a

)2 (
ξ

a

)2 (
kF

2πℏ/a

)2

, (4-23)

K2D
1 (q) = −2π5e2f(α)√

10ma2

(
q

2πℏ/a

)2

(G2D
νν )2, (4-24)

f(α) ≡ π

4 + π

2 cos2 α.

It is observed, as for the 3D case, that the response coefficient is proportional
to the square of the fidelity number, indicating the relationship that exists
between the paramagnetic current and the quantum geometry for 3D and 2D.

Dielectric function in s-wave superconductors

For this electromagnetic response, we need to calculate P0(q, 0) given
by eq. (4-15), this is done by replacing eq. (4-17) and using again the
approximation Ek + Ek+q ≈ 2Ek, obtaining

P 3D
0 (q, 0) ≈ q2

∫ d3k
(2πℏ/a)3

gνν

Ek
. (4-25)
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The analytical formulation of eq. (4-25), detailed in appendix C, is

P 3D
0 (q, 0) = − 4π4

3
√

10∆

(
ξ

a

)(
kF

2πℏ/a

)2 (
q

2πℏ/a

)2

, (4-26)

P 3D
0 (q, 0) = − 8π2

√
5∆

(
q

2πℏ/a

)2 G3D
νν

ℏ/a
, (4-27)

where we have used eq. (3-37) to express it in terms of the 3D fidelity number.
So, we see that the linear screening is also determined by the coherence
length and hence the fidelity number, signifying the influence of quantum
geometry in the linear screening. On the other hand, for the 2D case, as seen
in appendix C.2, we have the following expressions

P 2D
0 (q, 0) = − π4

√
10∆

(
ξ

a

)(
kF

2πℏ/a

)(
q

2πℏ/a

)2

,

P 2D
0 (q, 0) = − 8π2

√
5∆

(
q

2πℏ/a

)2

G2D
νν , (4-28)

which equivalently indicates, as in the 3D case, that P 2D
0 (q, 0) is directly

related to the fidelity number, showing that the static dielectric function is
related to quantum geometry.



5
Conclusions

Throughout this work, we have presented a study of the quantum geo-
metric properties of singlet superconductors such as s-wave and d-wave super-
conductors and their relationships with different electromagnetic properties:
infrared absorption, the paramagnetic current, and the dielectric function. For
the case of geometric properties, we studied the quantum metric, whose def-
inition arises from the overlap of two quasihole states |n⟩ defined at k and
k+δk, which turns out to be non-trivial as it is different from zero. For s-wave
superconductors, we showed how the quantum metric represents the twisting
of the unit vector wk = (vk,−uk), formed with the Bogoliubov coefficients,
in the Hilbert space. While for d-wave superconductors, we showed that the
quantum metric diverges near their nodal points, which is represented by a
dramatic twisting of the vector wk forming vortices around these points.

We also studied the fidelity number, which is defined as the integral of
the quantum metric over the Brillouin zone, and physically represents the
average distance between two neighboring quasihole states. An important
result we obtained is that for s-wave superconductors, the fidelity number
is directly related to the coherence length, leading to the conclusion that if a
property is related to the coherence length, then it must also be related to the
fidelity number. On the other hand, for d-wave superconductors, we showed
that since the quantum metric diverges near the nodal points, their fidelity
number also diverges. Another quantity we studied is the fidelity marker, which
represents the mapping at each lattice site of the fidelity number. We observed
that for s-wave superconductors, introducing a nonmagnetic impurity locally
suppresses the fidelity marker. Physically, this indicates that this impurity
reduces the average distance between quasihole states in momentum space.
Concluding that disorder modify the quantum geometric properties of s-wave
superconductors.

Moreover, we explored electromagnetic responses such as infrared ab-
sorption, the paramagnetic current, and the dielectric function for singlet su-
perconductors. Especially for s-wave superconductors, each of these responses
was expressed in terms of the quantum metric or the fidelity number, thus
showing that these responses are related to quantum geometry. On the other
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hand, in the case of d-wave superconductors, we have not directly related the
electromagnetic responses to the quantum geometry due to the singular be-
havior of the quantum metric around the nodal points, showing a divergent
fidelity number.

Based on the foregoing, we can conclude that our work provides a de-
tailed explanation of the quantum geometric properties of singlet supercon-
ductors and how these properties are susceptible to disorder. Furthermore, we
demonstrate that they can be experimentally measured by making use of their
relationship with electromagnetic responses. Future research based on our work
could consider both the expansion of the results obtained for the case of non-
zero temperature, as well as the exploration of other types of superconductors
with different pairing symmetries, such as those of triplet superconductors.
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A
Polarization operator is singlet superconductors

The electromagnetic responses are linked to different response functions.
For instance, in the appendix B, we will see that conductivity is associated
with the current-current correlator, and the dielectric function is related to
the density-density correlator. Both response functions are, in turn, related to
the polarization operator [62]. Due to this connection with the polarization
operator, the present appendix will focus on characterizing this operator for
singlet superconductors. This approach is adopted with the aim of using such
characterization to express the specific response functions for this type of
superconductors.

We will begin by defining the polarization operator in general terms using
the Matsubara formalism [62] as

P (k,q, iω) = −1
ℏ
∑
σσ′

∫ β

0
dτeiωτ ⟨Tτc

†
k+qσ(τ)ckσ(τ)c†

k′−qσ′(0)ck′σ′(0)⟩. (A-1)

Now we proceed to apply Wick’s theorem. This theorem states that the
ensemble average of a series of operators can be decomposed into the sum
of all their possible contractions, where a contraction is the ensemble average
of a pair of operators. Thus, by applying this theorem to the term ⟨...⟩ in
eq. (A-1), and considering only those contractions that are nonzero, we have

⟨...⟩ = ⟨Tτc
†
k+qσ(τ)ckσ(τ)⟩⟨Tτc

†
k′−qσ(0)ck′σ′(0)⟩

+ ⟨Tτc
†
k+qσ(τ)c†

k′−qσ′(τ)⟩⟨Tτckσ(τ)ck′σ′(τ)⟩

+ ⟨Tτc
†
k+qσ(τ)ck′σ′(0)⟩⟨Tτckσ(τ)c†

k′−qσ′(0)⟩.

(A-2)

We proceed by substituting eq. (A-2) into eq. (A-1) and applying the summa-
tion, we obtain

P (k,q, iω) = −1
ℏ

∫ β

0
dτeiωτ [G(k, τ)G(k + q,−τ) + F (k, τ)F †(k + q,−τ)],

(A-3)
where G(k, τ) and F (k, τ) are the Green’s functions used to address the BCS
theory [44, 62]. We can also express eq. (A-3) in the following way

P (k,q, iω) = 2
β

∑
ip

[G(k, ip)G(k+q, ip+iω)+F (k, ip)F †(k+q, ip+iω)], (A-4)
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where iω and ip are Matsubara frequencies. We can also express the Green’s
functions in terms of the Bogoliubov coefficients as follows [62]

G(k, ip) = u2
k

ip− Ek
+ v2

k
ip+ Ek

, (A-5)

F (k, ip) = F †(k, ip) = −ukvk

(
1

ip− Ek
+ 1
ip+ Ek

)
. (A-6)

Next, we use the frequency summations [62] which allow us to obtain the
following expressions

1
β

∑
ip

1
ip− Ek

1
ip+ iω − Ek+q

= nk − nk+q

iω + Ek − Ek+q
, (A-7)

− 1
β

∑
ip

1
ip− Ek

1
iω − ip− Ek+q

= 1 − nk − nk+q

iω − Ek − Ek+q
. (A-8)

So, using these eqs. (A-7) and (A-8), we can arrive at the following results

2
β

∑
ip

G(k, ip)G(k + q, ip+ iω) =

[1 − nk − nk+q]
(

v2
ku

2
k+q

iω − Ek − Ek+q

−
u2

kv
2
k+q

iω − Ek − Ek+q

)

+ [nk − nk+q]
(

u2
ku

2
k+q

iω + Ek − Ek+q

−
v2

kv
2
k+q

iω − Ek + Ek+q

)
, (A-9)

and
2
β

∑
ip

F (k, ip)F †(k + q, ip+ iω) =ukvkuk+qvk+q

[
1

iω + Ek − Ek+q

(nk − nk+q)

+ 1
iω + Ek + Ek+q

(1 − nk − nk+q)

− 1
iω − Ek − Ek+q

(1 − nk − nk+q)

− 1
iω − Ek + Ek+q

(nk − nk+q)
]
.

(A-10)

Considering the case where we are at zero temperature, there would be no
quasiparticles so nk = nk+q = 0, and eqs. (A-9) and (A-10) would reduce to

2
β

∑
ip

G(k, ip)G(k + q, ip+ iω) =
v2

ku
2
k+q

iω − Ek − Ek+q

−
u2

kv
2
k+q

iω − Ek − Ek+q

, (A-11)
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and

2
β

∑
ip

F (k, ip)F †(k + q, ip+ iω) = ukvkuk+qvk+q×
[

1
iω + Ek + Ek+q

− 1
iω − Ek − Ek+q

]
.

(A-12)

We then proceed to substitute eqs. (A-11) and (A-12) into eq. (A-4), and after
applying the analytical continuation iω → ℏω+ iη, where η is a small artificial
broadening, we can express the polarization operator at zero temperature for
s-wave superconductors as follows

P0(k,q, ω) = 2
[
u2

k+qv
2
k − ukvkuk+qvk+q

ℏω − Ek − Ek+q + iη
−
v2

k+qu
2
k − ukvkuk+qvk+q

ℏω + Ek + Ek+q + iη

]
.

(A-13)
The expression above represents the polarization operator for a singlet super-
conductor at zero temperature. The expression in eq. (A-13) allows us to study
both dissipative and non-dissipative processes.

Dissipative processes correspond to dynamic responses of the system,
such as emission and absorption processes that are related to the imaginary
part of the polarization operator. Meanwhile, the real part of this operator
is linked to non-dissipative processes, which provide information about the
static responses of the system, for example, when considering electromagnetic
perturbations with frequencies ω = 0.

In this dissertation, we will focus on the study of two types of situations.
On one hand, the optical absorption process, which will allow us to study in-
frared absorption in s-wave superconductors and corresponds to the excitation
of quasiparticles. This process corresponds to the imaginary part of the first
term of eq. (A-13) at a finite frequency, obtaining

− 1
π

ImPo(k,q, ω) = 2
[
u2

k+qv
2
k − ukvkuk+qvk+q

]
δ(ℏω − Ek − Ek+q), (A-14)

where the delta function ensures the conservation of energy and momentum.
On the other hand, we will also study static responses of the system, such as
the paramagnetic current and the dielectric function, both for ω = 0. These
responses are related to the real part of both terms of eq. (A-13) in the ω = 0
limit, which gives us

ReP0(k,q, 0) = 2 (uk+qvk − vk+quk)2

Ek + Ek+q
. (A-15)

Therefore, by using eqs. (A-14) and (A-15), we can obtain the aforementioned
electromagnetic responses, which are infrared absorption, the paramagnetic
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current, and the dielectric function. The importance of these two equations is
that we have related them to the coherence factors

(
u2

k+qv
2
k − ukvkuk+qvk+q

)
and (uk+qvk − vk+quk)2, which in turn can be associated with the quantum
metric as shown in chapter 4. This will allow us to associate each of these
electromagnetic responses with the quantum metric and the fidelity number,
providing us with the possibility of measuring them experimentally.



B
Electromagnetic responses for an non-interacting electron gas

In this appendix, we calculate some electromagnetic responses such as
the electrical conductivity and the dielectric function for an electron gas with
the aim of using the final equations obtained here for the case of singlet
superconductors in chapter 4.

B.1
Electromagnetic perturbation

We will study how some quantities are modified when considering the
electromagnetic field. First, we will begin with the current density operator

jα = e

V
∑

i

⟨viα⟩, (B-1)

where e is the electron charge, V is the volume, and viα represents the velocity
of the i-th particle in the α direction. When considering the electromagnetic
field, the velocity of the particles is modified in the following way

vi = 1
m

[pi − eA(ri)] . (B-2)

Then, the current considering the electromagnetic field has the following form
[62]

jα = jα1 + jα2, (B-3)

jα1 = e

mV
∑

i

⟨piα⟩, (B-4)

jα2 = − e2

mV
∑

i

Aα, (B-5)

where jα1 refers to the paramagnetic response of the material, hence it is
called the paramagnetic current, this current is responsible for the decay of
the current in the material; while jα2 refers to the diamagnetic response of the
material [63].

In the case of the Hamiltonian, when we introduce a perturbation due to
an electromagnetic field, the perturbative Hamiltonian has two components.
The first is due to the scalar potential H ′

1 and the other part due to the vector
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potential H ′
2, so it is expressed in the following way [44]

H ′ = H ′
1 +H ′

2, (B-6)

H ′
1 = e

∫
dr ρ(r)ϕ, (B-7)

H ′
2 =

∫
dr j(r) · A. (B-8)

Depending on the electromagnetic response we want to calculate, we use linear
response theory with the appropriate perturbative Hamiltonian considering the
convenient gauge.

B.2
Electrical conductivity

We start from a system of electrons subject to an external electromagnetic
field, this field induces a current, and the coefficient of linear response is the
conductivity [44]

Jα(r, t) =
∫
dt′
∫
dr′σαβ(r, t; r′, t′)Eβ(r′, t′). (B-9)

By performing a Fourier transform we can express eq. (B-9) as follows

Jα(r, t) = σαβ(q, ω)Eβ(r, t), (B-10)

where σαβ is the conductivity tensor that describes the current response
in direction α̂ to an electric field applied in direction β̂ and Eβ(r, t) =
|Eβ| exp i(q · r − ωt). The vector potential related to this electric field can
be expressed as Aβ = (−i/ω)|Eβ| exp i(q · r − ωt) considering a gauge where
the electric potential is zero, because the final result does not depend on the
gauge choice.

The Hamiltonian of this system has the following form H = H0 + H ′,
where H0 is the unperturbed system and H ′ is given by the eq. (B-8)

H ′ =
∫
drjα(r, t)Aα(r, t), (B-11)

where Aα is the vector potential. As explained in appendix B.1, the form of the
current changes when considering a vector potential, as indicated in eq. (B-3).
Then, we now proceed to express this current by taking its expected value, as
follows

⟨Jα⟩ = ⟨jα(r, t)⟩ + ie2

mω
Eα(r, t)⟨ρ⟩0, (B-12)

where second term in the current is proportional to Eα linearly, and to calculate
it, we must find the expected value of the density operator in the equilibrium
state ⟨ρ⟩0. On the other hand, to find ⟨jα(r, t)⟩, we must use linear response
theory, which leads to the following result
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⟨jα(r, t)⟩ = −i
ℏ

∫
dr
∫ t

−∞
dt⟨[jα(r, t), H ′(r′, t′)]⟩. (B-13)

Replacing the perturbative Hamiltonian H ′ from eq. (B-11) into eq. (B-13), it
can be verified by comparison with equation eq. (B-9) that the conductivity is
left as [62, 44]

σαβ(r, t; r′, t′) = i

ω

[
παβ + e2⟨ρ⟩0

m
δ(r − r′)δαβ

]
, (B-14)

where the term παβ is called the current-current correlator and is defined as
follows

παβ = i

ℏ
θ(t− t′)⟨[jα(r, t), jβ(r′, t′)]⟩. (B-15)

Then, we can observe that through linear response theory, we can obtain an
expression for the electrical conductivity, which depends on the current-current
correlator. The eq. (B-14) is important in our study since we are interested in
calculating infrared absorption, which is an absorption process that represents
the real part of the conductivity [44, 62, 63]. In turn, the real part of the
conductivity is equivalent to taking the imaginary part of παβ divided by the
frequency

Reσαβ(r, t) = 1
ω

Im [παβ(r, t)] . (B-16)
Thus, this last equation will allow us to study infrared absorption. To be able
to use it in s-wave superconductors, we would need to find the expression for
παβ for this type of superconductors, which will be carried out in chapter 4.

B.3
Dielectric response

In this section, we briefly present the most relevant equations related to
the dielectric function that will be used in the dissertation. We will work in
Gaussian units for calculating the dielectric response [56, 62].

Consider an electron gas into which an external electromagnetic distur-
bance is introduced. This causes the charges to reorganize and the system to
become polarized. Due to this polarization, the field due to the disturbance is
reduced, an effect known as screening [44, 62, 64]. The study of screening in-
volves the dielectric function and the charge susceptibility, which we will show
how their defining equations emerge below. Suppose we place an external po-
tential Vext in an electron gas, as a result, it induces a potential Vind. Then,
the total potential Vtot is the sum of both potentials

Vtot(r, t) = Vext(r, t) + Vind(r, t), (B-17)

and the total charge density is given by

ρe,tot(r, t) = ρe,ext(r, t) + ρe,ind(r, t), (B-18)
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where we can relate each of the potentials to its charge density through the
Poisson equation

−∇2Vtot(r, t) = 4πρe,tot(r, t) (B-19)

−∇2Vext(r, t) = 4πρe,ext(r, t) (B-20)

−∇2Vind(r, t) = 4πρe,ind(r, t). (B-21)

We will proceed to define the dielectric function ε(q, ω), after performing the
corresponding Fourier transforms, as the linear response coefficient between
the external potential and the total

Vext(q, ω) = ε(q, ω)Vtot(q, ω). (B-22)

Now, we are going to define the charge susceptibility.

ρe,ind(q, ω) = χ(q, ω)V (q, ω). (B-23)

Through the aforementioned equations, we can arrive at the following equation
relating the dielectric function and the charge susceptibility

ϵ(q) = 1 − 4π
q2 χ(k, ω). (B-24)

Next, we will calculate the charge susceptibility using linear response theory.
First, we express the perturbative Hamiltonian, given by eq. (B-7), in second
quantization after a Fourier transform as mentioned in [62] as

H ′ =
∑

σ

∑
k,q

V (q, t)c†
k+qσckσ, (B-25)

where V (q, ω) = −eϕ(q, ω), we will assume that this potential and the density
operator oscillate coherently with the same frequency

V (q, t) = V (q, ω)e−iωt, (B-26)

⟨ρ(q, t)⟩ = ⟨ρ(q, ω)⟩e−iωt, (B-27)

where the density operator in momentum space is

ρ(q) =
∑

σ

∑
k

c†
k+qσckσ. (B-28)

We proceed to make use of linear response theory, where we arrive at the
following relationship for the expected value of the density operator

⟨ρ(q, t)⟩ = − i

ℏ

∫ t

∞
dt′⟨[ρ(q, t), H ′]⟩. (B-29)

We proceed to substitute H ′, eq. (B-25), into eq. (B-29). Subsequently, we
apply the random phase approximation (RPA) and, taking into account the
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definition of charge susceptibility given by eq. (B-23), we arrive at the following
equation for the charge susceptibility, which in linear response theory is called
the density-density correlator

χ(k, ω) = − i

ℏ

∫ t

∞
dt′eiω(t−t′)⟨[ρ(q, t), ρ(−q, t′)]⟩. (B-30)

The expression above, provides information about the dielectric response of
the system when subjected to an electromagnetic perturbation.



C
Analytical expressions in s-wave superconductors

In this appendix, we will show the steps to obtain analytical expressions
for quantum geometry and electromagnetic responses. To achieve this, we will
consider a continuous model, assuming proximity to the Fermi surface, to ex-
press various terms, such as the dispersion energy Ek and the quantum metric
gνν in their analytical forms. Subsequently, we will make some approximations
to arrive at the analytical form of the fidelity number. For the case of electro-
magnetic responses, we will follow similar steps, which will be detailed in this
appendix, focusing on the paramagnetic current response coefficient K1(q) and
the term P0(q, 0) of the dielectric function.

C.1
Analytical expressions for the quantum geometry

Quantum metric

We previously saw that the expression for the quantum metric for the
case of s-wave superconductors is given by eq. (3-30). To derive an analytical
expression, we will consider a continuous model assuming proximity to the
Fermi surface. Thus, the dispersion energy can be expressed in the following
way

Ek =
( k2

2m − k2
F

2m

)2

+ ∆2

1/2

, (C-1)

using the coherence length ξ = ℏvF/π∆ = ℏkF/mπ∆ we can arrive at
expressing it as follows

Ek ≈ ∆
1 + 1

2

(
πξ

ℏ

)2

(k − kF )2

 . (C-2)

Now, we replace the eq. (C-2) in the quantum metric eq. (3-30), later we
consider that vµ = k cos θ/m and the following approximation for a small
value of y

1/(1 + y)n ≈ 1/(1 + ny). (C-3)
Obtaining the following expression
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gνν =
∆2v2

µ

4E4 ≈ (k cos θ/m)2

4∆2
[
1 + 2

(
πξ
ℏ

)2
(k − kF )2

] . (C-4)

In this way, we obtain the analytical expression of the quantum metric that
will be used later on.

Fidelity number en 3D

In the case of the fidelity number, we will integrate the metric given by
eq. (C-4) following the definition given in eq. (3-15) for 3D and 2D. First, we
will start with the calculation in 3D

G3D
µµ =

∫ d3k
(2π)3 gµµ. (C-5)

Now, considering spherical coordinates d3k = k2 sin θ dk dθ dφ and solving the
integrals for θ and φ we obtain

G3D
µµ = 1

24π2∆2m2

∫ ∞

0
dk

k4[
1 + 1

2

(
πξ
ℏ

)2
(k − kF )2

]4 . (C-6)

We proceed to make the change of variable k = (2πℏ/a)x and using the eq. (C-
3), we can obtain the following expression

G3D
µµ = 1

24π2∆2m2

∫ ∞

0
dx

(
2πℏ

a

)5
x4

1 + 8π4
(

ξ
a

)2
(x− xF )2

, (C-7)

where we can express a part of the integrand with an extremely narrow
Lorentzian, due to this we can approximate it to a delta function

1[
1 + 2nπ4

(
ξ
ℏ

)2
(k − kF )2

] = η2

η2 + (x− xF )2 ≈ πηδ(x− xF ), (C-8)

where η = a/
√

2nπ2ξ. Using the approximation eq. (C-8) for n = 4 in eq. (C-7)
we have

G3D
µµ =

√
2

3
π2ℏ5

∆2m2a4ξ

∫ ∞

0
dx x4δ(x− xF ), (C-9)

G3D
µµ =

√
2

3
π2ℏ5

∆2m2a4ξ

(
kF

2πℏ/a

)4

, (C-10)

where we apply the property of the delta function for the integral. Now we can
reconfigure the last expression in such a way that it can be written as follows

G3D
µµ = π2

6
√

2

(
ξ

a

)(
kF

2πℏ/a

)2 (ℏ
a

)
, (C-11)
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this last equation shows us the analytical expression of G3D
µµ , and we can also

verify that its units are correct.

Fidelity number in 2D

Now we will calculate the fidelity number for 2D following the definition
given by eq. (3-15) for 2D

G2D
µµ =

∫ d2k
(2π)2 gµµ. (C-12)

we now consider polar coordinates d2k = k sin θ dk dθ and solving the integral
for θ obtaining

G2D
µµ = 1

16π∆2m2

∫ ∞

0
dk

k3[
1 + 1

2

(
πξ
ℏ

)2
(k − kF )2

]4 . (C-13)

We continue with a change of variable k = (2πℏ/a)x and considering the
approximation given by eq. (C-3), we have

G2D
µµ = 1

16π∆2m2

∫ ∞

0
dx

(
2πℏ

a

)4
x3

1 + 8π4
(

ξ
a

)2
(x− xF )2

. (C-14)

Again considering the approximation eq. (C-8) for n = 4 we have

G2D
µµ =

√
2

4
π2ℏ4

∆2m2a3ξ

∫ ∞

0
dx x3δ(x− xF ) (C-15)

G2D
µµ =

√
2

4
π2ℏ4

∆2m2a3ξ

(
kF

2πℏ/a

)3

, (C-16)

reconfiguring this last equation we can write it as follows

G2D
µµ = π2

8
√

2

(
ξ

a

)(
kF

2πℏ/a

)
. (C-17)

The expression above is the analytical expression ofG2D
µµ whose units are correct

as it is just a dimensionless number, which is consistent with its definition.

C.2
Analytical expressions for the electromagnetic responses

Paramagnetic current

To calculate the analytical expression, they started with the definition
for K3D

1 (q), which is given by eq. (4-20)
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K3D
1 (q) ≈ −e2q2

∫ d3k
(2πℏ)3v

2
µ

gνν

Ek
, (C-18)

where ν̂ is the direction of q = qν̂ and µ̂ is the polarization direction. Now we
will use spherical coordinates for the integral, we have the following expression

K3D
1 (q) = −e2q2

∫ 2π

0
dφ
∫ π

0
dθ sin θ

∫ ∞

0

dk

(2πℏ)3 k
2v2

µ

gνν

Ek
. (C-19)

Let’s consider ν̂ in the angular integral, so we’re going to use the following
expression

vµ = k

m
cos(θ − α), (C-20)

where α is the angle between the propagation direction µ̂ and the polarization
ν̂. Next, we will replace eqs. (C-2), (C-4) and (C-20) in eq. (C-19), obtaining
after solving the integral for φ and θ the following

K3D
1 (q) = −2πe2q2f(α)

(2πℏ)34m4∆3

∫ ∞

0
dk

k6[
1 + 1

2

(
πξ
ℏ

)2
(k − kF )2

]5 , (C-21)

proceeding with a change of variable k = (2πℏ/a)x and considering the
approximations given by eqs. (C-3) and (C-8), we obtain after solving the
integral the following expression

K3D
1 (q) = −e2 4π6f(α)√

10ma3

(
ξ

a

)2 (
q

2πℏ/a

)2 (
kF

2πℏ/a

)3

, (C-22)

f(α) ≡ 4
15 + 2

15 cos2 α,

where we can use the expression given by eq. (C-11) for the fidelity number in
3D, obtaining

K3D
1 (q) = −288π2

√
10

f(α)e2

ma3

(
q

2πℏ/a

)2 (
kF

2πℏ/a

)−1 (G3D
νν

ℏ/a

)2

. (C-23)

Thus, obtaining the analytical expression for K3D
1 (q). For the 2D case, the

approach is similarly executed, once again utilizing the expression provided by
eq. (C-20) for vµ and this time evaluating the integral in polar coordinates,
yielding as a result

K2D
1 (q) = −2π5e2f(α)√

10ma2

(
q

2πℏ/a

)2 (
ξ

a

)2 (
kF

2πℏ/a

)2

, (C-24)

f(α) ≡ π

4 + π

2 cos2 α,

where using eq. (C-17), we can express it in terms of the fidelity number in 2D

K2D
1 (q) = −2π5e2f(α)√

10ma2

(
q

2πℏ/a

)2

(G2D
νν )2. (C-25)
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Hence, we have obtained an analytical expression for K2D
1 (q).

Linear screening

To obtain an analytical expression for P 3D
0 , we start from eq. (4-25)

P 3D
0 (q, 0) ≈ −q

∫ d3k
(2πℏ/a)3

gνν

Ek
. (C-26)

Now, we consider spherical coordinates for the integral, obtaining

P 3D
0 (q, 0) = −q

∫ 2π

0
dφ
∫ π

0
dθ sin θ

∫ ∞

0

dk

(2πℏ/a)3 k
2 gνν

Ek
. (C-27)

We proceed by substituting eqs. (C-2) and (C-4) into eq. (C-27), obtaining
after solving the integral for φ and θ the following expression

P 3D
0 (q, 0) = − πq2

3(2πℏ/a)3∆3m2

∫ ∞

0
dk

k4[
1 + 1

2

(
πξ
ℏ

)2
(k − kF )2

]5 . (C-28)

Now, we perform the change of variable k = 2πℏ
a
x and apply the approximations

given by eqs. (C-3) and (C-8), proceeding to solve the integral, which yields
the following result

P 3D
0 (q, 0) = − 4π4

3
√

10∆

(
ξ

a

)(
kF

2πℏ/a

)2 (
q

2πℏ/a

)2

. (C-29)

We can relate the expression above to the fidelity number using the eq. (C-11),
obtaining

P 3D
0 (q, 0) = − 8π2

√
5∆

(
q

2πℏ/a

)2 G3D
νν

ℏ/a
. (C-30)

In this manner, we obtain the analytical expression for P 3D
0 (q, 0). For the

2D case, we proceed in the same manner, with the distinction that polar
coordinates must be employed, yielding the following result.

P 2D
0 (q, 0) = − π4

√
10∆

(
ξ

a

)(
kF

2πℏ/a

)(
q

2πℏ/a

)2

,

P 2D
0 (q, 0) = − 8π2

√
5∆

(
q

2πℏ/a

)2

G2D
νν . (C-31)

For this last expression, we have utilized eq. (C-17) for the fidelity number,
thereby presenting an analytical expression for P 2D

0 (q, 0).
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