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Abstract

Silva, Átila Luna Ambrósio da; Pesco, Sinesio (Advisor); Barreto Jr.,
Abelardo Borges (Co-Advisor). Physics Informed Neural Network
Applied to Fractional Flow Equations. Rio de Janeiro, 2023. 50p.
Dissertação de Mestrado – Departamento de Matemática, Pontifícia
Universidade Católica do Rio de Janeiro.

Physics Informed Machine Learning is the strategy of developing a neural
network with physical constraints, commonly expressed in partial differential
equations (PDEs) and their initial and boundary conditions. In this approach,
the main idea is to incorporate underlying physical laws expressed in these
PDEs as prior information for the neural network. In this work, we investigate
the applicability of this technique to the direct problem of two-phase fluid
transport in porous media, particularly in the context of gas injection in an
oil reservoir, whose physical constraints are described using nonlinear first-
order hyperbolic PDEs, subject to specific initial and boundary conditions.
Initially, we develop the equations governing the problem without considering
the fluid volume change factor to study the convergence of the solutions to
these PDEs. Based on the obtained results, we introduce the volume change
equations to capture the gas phase’s behavior better. The fractional flux
functions used in our examples were chosen as non-convex to include shock
and refraction phenomena in the solutions. We also incorporate a diffusive
factor, transforming the hyperbolic PDEs into parabolic ones. Through this
approach, the neural network could learn consistent approximate solutions.
Consequently, this effect smoothens the solution curves at the points of shock.

Keywords
Artificial intelligence; Machine learning; Physics; Neural network;

Fractional flow.



Resumo

Silva, Átila Luna Ambrósio da; Pesco, Sinesio; Barreto Jr., Abelardo Bor-
ges. Redes Neurais Baseadas em Física Aplicadas nas Equações
de Fluxo Fracionário. Rio de Janeiro, 2023. 50p. Dissertação de Mes-
trado – Departamento de Matemática, Pontifícia Universidade Católica
do Rio de Janeiro.

Aprendizado de máquina baseado em física (Physics Informed Machine
Learning), é a estratégia de desenvolver uma rede neural com restrições físicas,
comumente expressas em equações diferenciais parciais (EDPs) e suas condi-
ções iniciais e de contorno. Nesta abordagem, a ideia principal é incorporar
leis físicas subjacentes, expressas nessas EDPs, como informações prévias para
a rede neural. Neste trabalho, investigamos a aplicabilidade desta técnica para
o problema direto de transporte bifásico de fluidos em meios porosos, particu-
larmente no contexto da injeção de gás em um reservatório de petróleo, cujas
restrições físicas são descritas utilizando EDPs hiperbólicas não lineares de
primeira ordem, sujeitas a condições iniciais e de contorno específicas. Inicial-
mente, desenvolvemos as equações que governam o problema sem considerar
o fator de mudança de volume dos fluidos a fim de estudar a convergência da
solução dessas EDPs. Partindo dos resultados obtidos, introduzimos as equa-
ções de mudança de volume para capturar melhor o comportamento da fase
gasosa. As funções de fluxo fracionário utilizadas em nossos exemplos foram
escolhidas como não-convexas para as soluções conterem fenômenos de choque
e refração. Adicionalmente, incorporamos um fator difusivo, transformando as-
sim as EDPs hiperbólicas em parabólicas. Por meio desta abordagem, a rede
neural foi capaz de aprender soluções aproximadas consistentes. Como con-
sequência, este efeito suaviza as curvas de solução nos pontos de choque

Palavras-chave
Inteligência artificial; Aprendizado de máquina; Física; Rede neural;

Fluxo fracionário.
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1
Introduction

Deep learning has shown almost exponential growth in recent years, but
supervised approaches typically require a substantial amount of labeled data
to achieve good performance and convergence. The amount of data required for
convergence depends on various factors, including the complexity of the task,
the architecture of the deep learning model, and the quality of the data. A
smaller dataset might be sufficient for simple tasks, while more complex tasks,
such as image recognition or natural language processing, usually demand
larger datasets. Indeed, in some cases, the amount of data is not a problem.

In most cases involving analysis of physical or biological systems, or sys-
tems encompassing knowledge fields and techniques from engineering disci-
plines, the cost of acquiring data is often expensive and limited, leading to
the challenge of making decisions and reaching conclusions with incomplete
information. Problems of this type are classified in small-data regimes, and
traditional machine learning methods do not even guarantee convergence of
results. To address this problem, researchers started focusing on satisfying
both the available data (usually limited) and the governing partial differential
equations (PDEs) or physical constraints, leading to the emergence of a new
area: Physics-informed neural networks (PINN) (RAISSI, 2017b).

Recently, the capabilities of PINN were demonstrated for several prob-
lems in computer science: fluid dynamics (DOE; SMITH, 2022), electromag-
netics (RAISSI, 2017b), solid mechanics (WANG et al., 2021), optimization
(LU; MAO; LING, 2020) and inverse problems (TRIPATHY et al., 2021). The
concept of PINN was first introduced by Raissi et al. (2017a). Later, (RAISSI,
2017b), a paper from the same authors, developed and expanded this novel
approach. They suggested that if the considered PDE is well-posed, i.e., a so-
lution exists, it is unique, and the solution changes continuously with changes
in parameters (details in chapter 3), then the physics-informed machine learn-
ing (PIML) method can achieve compelling predictions given a sufficient num-
ber of neurons and layers in the neural network architecture and a sufficient
number of arbitrary points in the domain called collocation points.

In (FUKS; TCHELEPI, 2020), it is shown that this approach has
difficulty in modeling nonlinear hyperbolic PDEs that specifically govern
biphasic transport in porous medium. Based on their experience, they also
claim that this PIML deficit for problems with hyperbolic PDEs is unrelated
to the network architecture or the choice of hyperparameters, i.e., for any
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chosen PIML, the solution of the neural network does not converge into the
solution of the hyperbolic PDE. On the other hand, in (DIAB; AL-KOBAISI,
2021), they used PIML to solve a gas drainage problem in a porous medium
filled with water. Considering the Buckley-Leverett equation (BUCKLEY;
LEVERETT, 1942), they obtained surprising results, as they considered gas
as an incompressible fluid, which is a crucial assumption for this model.
Both articles used the method described in (CRANDALL; LIONS, 1983) to
transform a hyperbolic PDE into parabolic by adding a diffusive term to the
equation. These works motivated us to dive into some theory of gas injection
processes to improve the results.

This work considers an injection of gas into a reservoir filled with oil.
As the gas phase encounters the oil in the reservoir, new mixtures are formed
and come to equilibrium. The result is a set of separated components dur-
ing flow where the lighter components propagate faster than the heavy ones.
These separations are similar to those that occur during the chemical anal-
ysis technique known as chromatography. They are the basis for a variety of
enhanced oil recovery processes (RHEE; ARIS; AMUNDSON, 1970; HELF-
FERICH; KLEIN, 1970). We use the equations developed in (ORR, 2007) to
a chromatographic approach. We include volume change equations, which is
essential for this study.

PINN is widely used currently, with different methods to implement.
One of the most famous is using the Python programming language, which
offers many implemented libraries to create a robust model. Several works
use the TensorFlow library in Python (DIAB; AL-KOBAISI, 2021; FUKS;
TCHELEPI, 2020). In this work, we used the PyTorch library available
in Python, comparable to TensorFLow, considering its functionalities and
efficiency (STEVENS; ANTIGA; VIEHMANN, 2020).

This work is separated into five chapters. In chapter 2, we dive into the
fundamentals of the chromatographic mechanisms that are the basis of this
approach. Chapter 3 treats deep learning, specifically, the PINN architecture
used in our experiments. Chapter 4 compares the results to analytical solutions
for three problems: the same that (DIAB; AL-KOBAISI, 2021) tackle, so
we could check if our PINN is in the right direction. Then we implemented
the chromatographic equations with and without volume change. Chapter 5
discusses the results, conclusions, and which topics we could improve in future
works.



2
Fundamentals of flow in porous media

2.1
Motivation

The oil industry plays a significant role in the global economy and energy
sector (BALDINI; BORSI; FALCHETTI, 2019). As petroleum is a finite and
valuable resource, optimizing its production is vital. Using computational mod-
els and simulations has become increasingly crucial (AYERS; YAO; URBAN,
2020).

With the growth of computational power, researchers in reservoir engi-
neering created simulations where computer models are used to predict the
flow of fluids through porous media. These simulations aim to predict the fu-
ture performance of the reservoir and optimize the recovery of petroleum under
some operating conditions (CHEN, 2016).

Flooding gas or water into a reservoir might be necessary to enhance
oil production. However, the amount of recovered oil might be limited by
the accumulation of gas or water. This phenomenon, known as the "fingering
effect", can cause preferential flow paths that trap significant amounts of oil
in the reservoir, reducing overall oil recovery efficiency. After experimental
observations of the fluid flow through sands, (BUCKLEY; LEVERETT, 1942)
introduced a theory that estimates the rate at which one fluid displaces another
inside the reservoir and, consequently, the change in fluid saturations. This
theory is known as the fractional flow theory.

For two-phase flow, the Buckley–Leverett method ignores gravity and
capillary forces under the fluid incompressibility condition. These simplifying
assumptions are made to reduce the complexity of the model and facilitate the
analysis of fluid flow processes in porous media.

2.2
Definitions

Before delving into the porous media flow model, let us introduce some
concepts used in our work.

Phase refers to a distinct state of matter within a porous medium. In
the context of two-phase fluid flow in porous media, the two primary phases
are typically oil and water or gas and water. Each phase is characterized by
its physical properties, such as density, viscosity, and saturation, and occupies
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separate regions within the porous medium. The interactions and displacement
of these phases influence the overall flow behavior and transport of fluids in
the porous medium.

Component is a single chemical species. For example, the aqueous phase
contains components water (H2O), sodium chloride (NaCl), and dissolved
oxygen (O2), and the oil phase contains a different amount of components,
e.g., C1, C2, C3, etc.

Compressibility refers to the measure of a fluid’s ability to change in
volume or density in response to changes in pressure, particularly at a constant
temperature T . Fluids can be broadly classified into three categories based on
their compressibility: compressible, slightly compressible, and incompressible.
Water is generally considered slightly compressible or incompressible, while
natural gas is treated as compressible. For oil and its solution gas, the level
of compressibility depends on the pressure conditions in the reservoir. The
compressibility factor (cf ) can be defined in terms of the relative volume change
(V ) or density change (ρ) with respect to pressure (p) at constant temperature
T :

cf = − 1
V

∂V

∂p

∣∣∣∣∣
T

= −1
ρ

∂ρ

∂p

∣∣∣∣∣
T

. (2-1)

Porosity measures the amount of empty space in a porous medium, i.e.,
the volume fraction which is not occupied by the solid phase. It is defined as the
ratio of the volume of empty spaces to the total volume of the porous medium.
Porosity is essential for characterizing oil reservoirs, as it affects the amount
of fluid that can be stored and flowed within the porous medium. Porosity is
commonly denoted by ϕ and varies from 0.25 for a fairly permeable porous
media down to 0.1 for a very low permeable one.

Viscosity is a physical property of fluids that measures their resistance
to flow. Fluids with high viscosity flow more slowly and have greater resistance
to movement, while fluids with low viscosity flow more easily and have less
resistance to movement. The molecules are far apart for a gaseous fluid and
have a low resistance to flow due to their random motion. On the other hand,
a dense fluid has high resistance to flow since the molecules are close to each
other. In general, fluid viscosity depends on pressure, temperature, and its
compositions and is commonly denoted by µ.

Fractional Flow is a fraction that describes the proportion of a specific
fluid in a porous medium. In multiphase flow systems, such as oil reservoirs,
the Fractional Flow of a fluid is the ratio of the flow of that fluid to the total
flow of all fluids present in the porous medium. Symbols for gas and oil in a
two-phase flow system are fg = λg/λ and fo = λo/λ, where λ = λg + λo is the
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total mobility.
Fluid Saturation refers to the proportion of the pore space occupied by

a specific phase (water, oil, or gas) in a porous medium. This work will denote
fluid saturation by the symbol S. For example, in a reservoir containing water
and gas phases, the respective saturations Sw and Sg are defined such that
they jointly fill the voids, satisfying the relationship:

Sw + Sg = 1. (2-2)

Fluid saturation is critical in multiphase flow phenomena, influencing
important functions such as capillary pressure and relative permeability.
These functions exhibit strong dependence on saturations and are crucial in
characterizing the flow behavior of different fluid phases within the porous
medium.

Permeability of a reservoir, denoted by k, measure how easily fluids
can move through the porous medium. Higher permeability allows fluids
to flow more efficiently, while lower permeability restricts fluid movement.
Permeability is crucial in understanding and modeling fluid flow in porous
media.

Relative Permeability quantifies the effective permeability of a phase
in the presence of other immiscible phases. It accounts for the reduction in
flow capacity due to the presence of other fluids. The relative permeabilities
to the oil and gas phases are denoted by kro and krg, respectively.

Residual Saturation: When a phase displaces another in a reservoir
(e.g., gas displacing oil), a fraction of the original phase remains trapped in
the pore space. This fraction is known as the residual saturation of the phase,
denoted as Sor for oil and Sgc for gas. At the residual saturation of a phase, the
corresponding relative permeability of that phase becomes zero. Therefore,
at the residual saturation, the trapped phase contributes no effective flow to
the overall fluid transport through the reservoir.

Mobility measures the ease with which a fluid can flow through a porous
medium. It is defined as the product of the medium’s permeability and the
reciprocal of the fluid’s viscosity. For example, the mobilities of the water, oil,
and gas phases are λw = krw/µw, λo = kro/µo, and λg = krg/µg, respectively.

Corey type curves are approximations to relative permeability curves
(COREY, 1954). For oil and gas, they can be expressed as follows:

krg =
(

Sg − Sgc

1 − Sgc − Sor

)No

, (2-3)

and
kro =

(
1 − Sg − Sor

1 − Sgc − Sor

)Ng

, (2-4)
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where Sg is the saturation of gas, Sor is the residual saturation of the oil and
Sgc is the corresponding connate gas level. The empirical parameters No and
Ng are "shape parameters". Through observations of the measured data and
optimization using numerical simulations, these parameters can be obtained
to match experimental results (COREY, 1966; BROOKS; COREY, 1964).

Phase equilibrium is the study of the equilibrium which exists between
or within different states of matter, namely solid, liquid and gas. The represen-
tation of equilibrium phase behavior is a key part of the models here, because
some conservation equations are based on the assumption of local chemical
equilibrium (WAALS, 1988). Under that assumption, the compositions of the
phases that form at a particular location in the porous medium are determined
by the pressure and temperature at that location and, of course, the overall
composition of the fluid present. However, in many situations, the magnitude
of the pressure drop due to flow is small compared to the pressure level. In
field-scale displacements, it is commonly observed that pressure gradients near
injection and production wells are significant, but there are large portions of
the reservoir for which gradients are small. Under those circumstances it is
reasonable to evaluate equilibrium phase behavior at a single pressure and
temperature. We make use here of the remarkable fact, shown originally by
(GIBBS, 1878) that if the relationship between pressure, temperature, vol-
ume, and composition can be specified, as it can by an equation of state, then
the composition of equilibrium phases can be calculated utilizing equations of
state, which describe the state of matter under this set of conditions.

2.3
Darcy’s Law

Darcy’s Law is a fundamental fluid dynamics equation governing fluid
flow through porous media. It was first formulated by Henry Darcy in 1856
and has since become a cornerstone in various fields, such as groundwater
hydrology, oil reservoir engineering, and soil mechanics (DARCY, 1856). It
establishes a direct relationship between the flow rate of a fluid, the pressure
gradient, and the permeability of the porous medium (BEAR, 2013). By
understanding Darcy’s Law, engineers and scientists can gain valuable insights
into fluid behavior in porous media and make informed decisions in various
applications.

Darcy’s Law can be derived from the Navier-Stokes equation, which is
a fundamental equation in fluid dynamics describing the motion of fluid sub-
stances, taking into account factors such as viscosity, pressure, and velocity
(BATCHELOR, 1967). For single-phase flow, when performing volume aver-
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aging of the momentum equations, we arrive at an equivalent form known
as Darcy’s law (BEAR, 1972). This law states that the local flow velocity is
directly proportional to the pressure gradient (BIRD; STEWART; LIGHT-
FOOT, 2007). Then if the flow velocity of a phase is represented as vj we can
express the flow velocity of a phase as:

vj = −kkrj

µj

(∇Pj + ρmjg), (2-5)

where, k represents the permeability of the porous medium, krj, µj, Pj and
ρmj denotes the relative permeability, the viscosity, pressure and mass density
of the phase j respectively and g denotes the acceleration due to gravity.

The presence of the phase subscript, j, on the pressure in Equation 2-5
indicates that the pressures can vary across different phases. This variation
is necessary when the phases are separated by curved interfaces with non-
zero interfacial tension. The relationships between these pressures are typically
described by capillary pressure functions of the form:

Pj − Pk = Pckj, j = 1, · · · , np, k = 1, · · · , np, j ̸= k. (2-6)

where np represents the total number of phases and Pckj denotes the capillary
pressure across phases j and k. The capillary pressures are usually assumed
to be functions of the saturations of the phases and are considered properties
of the fluids and the porous medium (BEAR, 1972). These pressures can be
measured through independent experiments.

2.4
Two-phase Flow Solution

Here we use the fractional flow theory to simulate the displacement of
oil-filled porous media by gas. With that in mind we have assume that:

– we have a horizontal flow in one-dimensional space, i.e., let

Ω = {(x, t)|x ∈ R, t ∈ R},

– the porous medium is homogeneous, incompressible and isotropic;
– only two phases are flowing (namely gas and oil), so np = 2, and the

number of components nc is equal to 2;
– local equilibrium exits;
– the fluids are incompressible;
– capillary pressures are negligible, i.e., Equation 2-6 turns:

Pj − Pk = 0, j = o, g, k = o, g, j ̸= k,
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then Pj = Pk = P for all j ̸= k.

Honoring these assumptions, Darcy’s law (Equation 2-5) becomes:

vj = −kkrj

µj

∂P

∂x
, (2-7)

where j = o represents the oleic phase and j = g represents the gas phase, k is
the total permeability of reservoir, krj is the relative permeability of jth phase,
µj is the viscosity of phase j.

The whole form of the continuity equations for multicomponent, multi-
phase flow:

∂

∂t
ϕ

2∑
j=1

xijρjSj + ∇ ·
2∑

j=1
xijρj v⃗j − ∇ · ϕ

2∑
j=1

⃗⃗
Kij · ∇ρjxij = 0, i = 1, 2, (2-8)

is complex enough that it must be solved numerically unless the aforementioned
simplifying assumptions are made. Hereupon, for one-dimensional flow in a
Cartesian coordinate system, these equations reduces to:

d

dt
ϕ

2∑
j=1

xijρjSj + d

dx

2∑
j=1

(
xijρjvj + ϕKij

∂ρjxij

∂x

)
, i = 1, 2, (2-9)

where ϕ is the porosity, ρj and Sj are the molar density and the saturation
(volume fraction) of the phase j, xij is the mole fraction of component i in the
phase j, vj is the Darcy’s flow velocity of the phase j and Kij is the dispersion
tensor for component i in phase j that includes contributions due to diffusion
and dispersion.

But note that capillary pressure differences are neglected, so Equation 2-
9 can be simplified by eliminating the pressure gradient from the expressions
for the flow velocities. Phase flow velocities can then be written in terms of
fractional flow functions, fj defined by:

vj = fjv = fj

2∑
k=1

vk, j = 1, 2. (2-10)

Besides that, the effects of dispersion will be negleted, so the Equation 2-
9 reduces to a set of equations that describes the interaction of pure convection
with equilibrium phase behavior:

d

dt
ϕ

2∑
j=1

xijρjSj + d

dx
v

2∑
j=1

xijρjfj = 0, i = 1, 2. (2-11)

Additionally, it is convenient to express Equation 2-11 in a dimensionless
form by utilizing the following scaled variables:
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xD = x

L
, (2-12)

tD = vinjt

ϕL
, (2-13)

vD = v

vinj

, (2-14)

ρjD = ρj

ρinj

, (2-15)

where vinj and ρinj are the flow velocity and density of the injected fluid, and L

is the length of the one-dimensional flow system. So with that the Equation 2-
11 turns:

d

dtD

2∑
j=1

xijρjDSj + d

dxD

vD

2∑
j=1

xijρjDfj = 0, i = 1, 2, (2-16)

and the notation of Equation 2-16 can be symplified defining this two functions:

Gi =
2∑

j=1
xijρjDSj, (2-17)

and

Hi =
2∑

j=1
xijρjDfj, (2-18)

where Gi is an overall concentration (in moles per unit volume) of component
i and Hi is an overall molar flow of component i. The equations for multicom-
ponent, multiphase convection are, therefore,

∂Gi

∂tD

+ ∂Hi

∂xD

= 0, i = 1, 2. (2-19)

2.5
No volume change

If the displacement pressure is high enough, then the volume occupied by
a component in the gas phase may not change greatly when that component
transfers to the liquid phase. Components in the liquid/liquid systems that
describe surfactant flooding processes also exhibit minimal volume change on
mixing. In such systems, it is reasonable to assume that the partial molar
volume of each component is a constant (independent of composition or phase)
and hence that ideal mixing applies (ORR, 2007). Under the assumption that
each component has a constant molar density, ρci, in any phase Equation 2-19
can be simplified further. The local flow velocity is constant everywhere and
equal to the injection velocity, so vD = 1. Furthermore, the volume occupied
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by component i in one mole of phase j is xij/ρci, and the volume fraction of
component i in phase j is:

cij = xij/ρci∑2
k=1 xkj/ρck

. (2-20)

The molar density of a phase is:

ρj =
( 2∑

i=1

xij

ρci

)−1

, (2-21)

so comparing Equation 2-20 with Equation 2-21 we have:

ρcicij = ρjxij. (2-22)
Substituting Equation 2-22 into Equation 2-16 and dividing Equation 2-

22 by ρci with vD = 1, we get:

∂

∂tD

2∑
j=1

cijSj + ∂

∂xD

2∑
j=1

cijfj = 0, i = 1, 2. (2-23)

By definition, c1j +c2j = 1, so we can express C2 in terms of C1 and then,
reduce the system to a single equation:

∂C1

∂tD

+ ∂F1

∂xD

= 0, (2-24)

where

C1 =
2∑

j=1
c1jSj, (2-25)

F1 =
2∑

j=1
c1jfj, (2-26)

and we can simplify the notations: C1 = C, F1 = F , cij = cj, S1 = S and
f1 = f .

2.6
Initial and Boundary Conditions

Before Equation 2-19 and Equation 2-24 can be solved, initial and
boundary conditions must be imposed. In the cases that we will treat, solutions
will be derived for initial compositions that are constant throughout a finite
domain,

Gi(xD, 0) = Ginit
i , 0 < xD <= 1, i = 1, 2, (2-27)

or
Ci(xD, 0) = Cinit

i , 0 < xD <= 1, i = 1, 2. (2-28)
The only boundary condition required is the composition of the injected

fluid,

Gi(0, tD) = Ginj
i , 0 < tD <= 1, i = 1, 2, (2-29)
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or
Ci(0, tD) = Cinj

i , 0 < tD <= 1, i = 1, 2. (2-30)
Thus, at time tD = 0, the composition of the fluid at the inlet changes

discontinuously from the initial value to the injected value.
Problems in which the initial condition and the boundary condition

upstream remain constant are called Riemann problems. These scenarios
can be interpreted as depicting the progression of a discontinuity, initially
positioned at xD = 0, between constant initial states for xD < 0, representing
the injection composition, and for xD > 0, signifying the initial composition.
Given that the flow issue starts with advancing a discontinuity, it is not
unexpected that the solutions might also exhibit discontinuities recognized
as shocks. But the solutions can also have discontinuities even with smooth
initial conditions.

We now finished the mathematical fundamentals of compositional
changes and representations of chromatography. In chapter 4, we will solve
analytically the equations developed here using the method of characteristics,
and, in the next Chapter, we will present the architecture that we will use to
solve the same equations numerically.



3
Deep Learning for Solving PDEs

In fields like automatic translation, predictive search (SERRANO, 2016),
or recommendation engines (VERGANTI L. VENDRAMINELLI, 2020), get-
ting a large amount of data is not a problem. Automatic translation of lan-
guages, for example, is a field in which the efficacy of machine learning models
is directly proportional to the amount of data available to training (VASWANI
et al., 2017). Johnson (JOHNSON et al., 2017) explored the difficulty of
translation of languages with little data available. Besides that, it may be
possible to improve those algorithms with little data with learning transfer,
semi-supervising, or data augmentation strategies (SENNRICH; HADDOW;
BIRCH, 2016).

Realistically, in many cases where neural networks are used to find
solutions, we have access to noisy, incomplete, and sparse data because it
can be extremely costly, resulting in a small amount of data. Those cases are
common, specifically in engineering fields, and problems of this nature fall into
a category known as the small-data regime. An example of this situation occurs
in reservoir simulation. Suppose a deep learning model is trained to model an
entire reservoir using a limited dataset due to the cost to get them. As a result,
the dataset is small and sparsely distributed. In this scenario, the model may
need more data to learn the mechanics of the reservoir in order to converge.
The complexity of the deep learning model can lead to overfitting the few
available points, resulting in a lack of generalization to the whole reservoir.
Additionally, the sparse nature of the data can make it challenging to capture
discriminative features effectively (ÖKTEM; BERG; HANSEN, 2018).

Generally, in these types of problems, specific "rules" govern the situa-
tion. The major of these rules are physical constraints expressed as partial
differential equations (PDEs). Therefore, we can study these rules to imple-
ment them into our neural network as prior information. The following section
dive into studies of this idea first introduced by (RAISSI, 2017a).

3.1
Physics Informed Neural Networks

When dealing with problems involving partial differential equations
(PDEs) or physical principles, one can integrate prior knowledge and physics-
based constraints, which can help mitigate problems related to limited data
availability. Recently, (RAISSI, 2017a) considered a different approach for
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solving nonlinear PDEs utilizing deep neural networks. The Physics Informed
Neural Network (PINN) can converge to its solution by minimizing a loss
function that represents the PDE constraints. This makes them suitable for
problems where collecting extensive training data is challenging or costly.

The key concept in these studies is to approximate the solution of the
PDE one aims to solve with a deep neural network. Consider a general PDE
u(x) : Rd → R given by:

N(x, u) = F (x) , if x ∈ Ω, and (3-1)

B(x, u) = G(x) , if x ∈ ∂Ω, (3-2)

with Ω ⊂ Rd, N and B the differential operators on the interior and boundary,
respectively, and F , G are source functions. These operators and functions
define constraints on u that must be satisfied to solve the PDE. Then, to
solve Equation 3-1 and Equation 3-2, the authors of (RAISSI, 2017b) suggest
rewriting the PDE as:

N (x, u) := N(x, u) − F (x) = 0 , if x ∈ Ω, and (3-3)

B(x, u) := B(x, u) − G(x) = 0 , if x ∈ ∂Ω, (3-4)

and minimizing the loss

L(û) = 1
nI

nI∑
i=1

N (xi
I , û)2 + 1

nB

nB∑
i=1

B(xi
B, û)2, (3-5)

with a deep neural network. Here, nI and nB are the number of collocation
points xi

I ∈ Ω and xi
B ∈ δΩ, respectively, and û(x) is the output of the neural

network that when feeding with x, approximates the true solution u(x).
The following section provides a mathematical motivation for the use of

this method. This inspiration begins when we notice that the loss function of
Equation 3-5 can be viewed as a Monte-Carlo approximation of a functional
(MEER; OOSTERLEE; BOROVYKH, 2022).

3.2
Loss theory

Most of the time, computing loss functionals exactly is almost impossible
work, resulting in a rare usage for neural network training. However, these loss
functionals are way easier to analyze mathematically. One can avoid issues
associated with collocation point distribution by focusing on a continuous form
of them rather than their approximations. So let defining a continuous and
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generalized loss functional:
Definition 3.1 Let 0 < c1, c2 ∈ R be real constants, p ≥ 1 and | · | be the
Lp-norm. The generalized loss functional is defined by:

L̂(û) = c1

∫
Ω

|N (xi
I , û)|p + c2

∫
Ω

|B(xi
B, û)|p. (3-6)

Note that this loss functional is positive, but only zero if N and B are
zero everywhere in Ω. Thus its global minimizer coincides with the solution
of the PDE defined in Equation 3-3 and Equation 3-4. This is a property
that the Monte Carlo approximation of the loss function in Equation 3-5
lacks. Minimizing it only ensures that the PDE is satisfied at a finite number
of collocation points. Nevertheless, the minimization of the loss function of
Equation 3-5 to solve a PDE can still be motivated by the properties of the
loss functional of Equation 3-6 if the PDE has certain behavior. The following
definition is the necessary property that a PDE must have so that we can
continue to analyze the generalized loss functional besides the Monte-Carlo
approximation.

Definition 3.2 (Wesseling, 2000) Let Ω ⊂ Rd be a sufficiently smooth
domain and N and B defined as Equation 3-2 with N , B the operators that
define the PDE, and F , G source functions. Such a PDE is called well-posed
if for all F , G there exists a unique solution, and if for every two sets of data
F1, G1 and F2, G2, the corresponding solutions u1 and u2 satisfy:

|u1 − u2| ≤ C(|F1 − F2| + |G1 − G2|), (3-7)

for some fixed and finite constant C ∈ R. Such a constant C will be referred
to as the Lipschitz constant of the PDE.

So far, it is clear that minimizing the loss functional exactly yields a
solution of the PDE. In practical problems, however, it is highly unlikely that
this exact minimum will be achieved. Even if it is possible to find a solution
for which the approximated loss function is zero, there is no guarantee that
the loss function will be zero in the entire domain. The following theorem
bridges the gap between this approximation and exact optimization of the loss
functionals (MEER; OOSTERLEE; BOROVYKH, 2022).

Theorem 3.3 (Meer, Oosterlee, Borovykh, 2022) Consider the well-
posed PDE of order k given by:

N (x, u) := N(x, u) − F (x) = 0 , if x ∈ Ω, and (3-8)

B(x, u) := B(x, u) − G(x) = 0 , if x ∈ ∂Ω. (3-9)
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Let the exact solution of this PDE be given by u and let the loss functional
be given by Equation 3-6 for some fixed p ≥ 1 and c1, c2 > 0. Consider some
approximate solution û of which the first k (partial) derivatives exist and have
finite Lp norm. Then, for any ϵ > 0 there exists a δ > 0 such that for the
approximate solution û,

L̂(û) < δ =⇒ |û − u| < ϵ. (3-10)

The theorem 3.3 can then be applied to conclude that a low loss
function implies that the approximations are accurate, validating the use
of the approximation for well-posed problems. This result, however, does
not guarantee that it is reasonable to expect neural networks to reach such
small loss values. To overcome this issue, Sirignamo proposed and proved the
following theorem in (SIRIGNANO; SPILIOPOULOS, 2018).

Theorem 3.4 (Sirignano and Spiliopoulos) Let uθ
n(t, x) : R1+d → R be a

neural network with a single hidden-layer with n hidden units defined as:

uθ
n(t, x) =

n∑
i=1

βiσ

α1,it +
d∑

j=1
αj,ixj + cj

 , (3-11)

where σ : R → R is a nonlinear activation function such as sigmoid or
hyperbolic tangent function and θ = {αj,i, βi, cj} are the set of hyperparameters.
Suppose that uθ

n minimizes L̂(uθ
n). Then, under certain conditions there exists

a set θ of hyperparameters such that, L̂(uθ
n) → 0 as n → ∞

Theorem 3.4 motivates us to construct an architecture of neural network
sufficiently large to guarantee the loss function approaches zero. That is
sufficient to get an approximation of the true solution of the PDE displayed
in Equation 3-2 by Theorem 3.3. Now we can construct an architecture that
makes the loss function approaches zero. In the next chapter the architecture
that we will use and details of the problems that we tackle in this study is
presented.



4
Solving Volume Change Equations Using a Physics Informed
Neural Network

In this chapter we apply a PINN approach to solve Equation 2-19 and
Equation 2-24 and reproduce solutions of (ALMAJID; ABU-ALSAUD, 2020)
and (FUKS; TCHELEPI, 2020). We see that it is necessary to introduce a
diffusive factor into the PDE to the neural network converge, as seen in (FUKS;
TCHELEPI, 2020). In section 4.1, we introduce the proposed architecture and
their hyperparameters. Then, using the same hypothesis as (ALMAJID; ABU-
ALSAUD, 2020), in section 4.2, we solve a simpler PDE to see the potential of
the architecture that we use. Then in the section 4.3 we develop the analytical
solution of Equation 2-24 and solve it with our methodology based on the
PINN approach. In the last section, we solve Equation 2-19 that considers
volume change by using our neural network and compare it to the analytical
solution obtained by using the method of characteristics (MOC).

4.1
Architecture setup

To achieve consistency, we follow the same neural network definition as
(ALMAJID; ABU-ALSAUD, 2020). Let uθ(x) : R2 → R be an (L − 2)-hidden
layers neural network, with the number of layers equal to L, Nl neurons in
l th layer and x = (xD, tD), containing coordinates of dimensionless space and
time, be the input vector. We denote the weight matrix in the l th layer by
Wl , the bias vector by bl and the combined set of all weight matrices and
bias vectors as θ = {Wl , bl}2≤l≤L. We apply σ elementwise where σ is the
hyperbolic tangent (tanh). Therefore, the structure of the neural network is
defined as follows:

input layer: u1(x) = x, (4-1)

hidden layers: ul(x) = σ(Wlul−1(x) + bl) for 2 ≤ l ≤ L − 1, and (4-2)

output layer: uθ(x) = uL(x) = WL−1uL−1(x) + bL−1. (4-3)

where the hyperparameters we can see in Table 4.1 where we consider 8 hidden
layers (L = 10) with 20 neurons per hidden layer (Nl = 20) and 20000 training
steps (epochs).

To inform this neural network with physics, we define the residual PDE
N as in Equation 3-3. The initial and boundary conditions will depend on the
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Nic = Nbc Ncp L Nl epochs λ learning rate
Case 1 100 10000 10 20 20000 0.005 0.001Case 2-3 200 20000 0.0025

Table 4.1: Hyperparameters used in the Physics Informed Neural Network
architecture. L is the number of total layers, including input and output layers,
Nl is the number of neurons per layer, epoch is the number of training steps,
λ is the diffusion term in each case and the learning rate is the used in Adam
optimization method to training the PINN.

problem that we tackle. We introduce them in the following sections. In the
same manner that ux and ut can be found by differentiating u with respect to its
variables to build the PDE, uθ can be differentiated with respect to its inputs
to build a surrogate of the PDE. This can be achieved through automatic
differentiation (AD). AD computes derivatives by applying the chain rule
repeatedly. AD can be leveraged through well-documented machine learning
packages such as Tensorflow (ABADI et al., 2016). In this work, differently
from (ALMAJID; ABU-ALSAUD, 2020), we will use the PyTorch library
(PASZKE et al., 2019) and Adam optimization method to training the PINN.
While Tensorflow is an easy-to-develop models, the PyTorch library focuses on
usability with careful performance considerations and is more popular in the
research community (WADAWADAGI, 2023).

4.2
Buckley-Leverett Problem with a Nonconvex Flux Function

A conservation law is a PDE that describes the time evolution of some
quantity or quantities that are conserved in time. Let u(x, t) be an unknown
scalar conserved quantity that we are solving for, and f(u) be a scalar-valued
function called the flux function. The scalar conservation law is defined as

ut + f(u)x = 0, (4-4)
where ut is the partial derivative of the dependent quantity u with respect to
time (t), f(u) is a nonlinear flux function, and f(u)x is the partial derivative
of the flux function with respect to position (x). The solution to this problem
involves a shock wave whose solution is discontinuous. In this case, f(u) is
nonconvex (f ′′(u) changes sign), resulting in a more complicated solution
involving both a shock and a rarefaction wave.

In the Buckley-Leverett problem proposed by (ALMAJID; ABU-
ALSAUD, 2020), gas displaces water in a reservoir. The two phases are in-
compressible and immiscible, and capillary effects are negligible. The wa-
ter saturation is Sw(x, t) = u(x, t) and the gas saturation is defined as
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Sg(x, t) = 1 − Sw(x, t) as 0 ≤ Sw ≤ 1. The domain considered is x ∈ [0, 1]
and t ∈ [0, 1]. The problem is governed by a coupled system of conservation
equations that is supplemented by the Darcy equation (Equation 2-5). The
conservation equation for the gas phase with associated initial and boundary
conditions can be written as follows:

∂Sg

∂tD

+ ∂fg

∂xD

= 0, Sg(xD, 0) = 0, and Sg(0, tD) = 1 − Swr, (4-5)

where Swr is the water residual saturation and the flux function fw(Sw)
is also called the water fractional flow defined as follows:

fg = 1

1 + krwµg

krgµw

, (4-6)

where, krw and kro are the water and oil relative permeabilities respectively,
given by the Corey model presented as:

krw = k0
rw

(
Sw − Swr

1 − Sgr − Swr

)Nw

, (4-7)

and
krg = k0

rg

(
1 − Sw − Sgr

1 − Sgr − Swr

)No

. (4-8)

Figure 4.1: The water and gas rel-
ative permeability curves (krw and
krg, respectively.

Figure 4.2: The gas fractional flow
function and the constructed Welge
approximation to the Buckley Lev-
erett solution.

Here, k0
ro, and k0

rw are the gas and water end-point relative permeabilities
respectively. Table 4.3 lists the multiphase parameters used to generate the
relative permeability and the gas flux function curves. In the Equation 4-5,
xD is the dimensionless distance and tD is the dimensionless time defined as
Equation 2-12 and Equation 2-13.

The residual PDE N is defined as the left side of Equation 4-5 and we
proceed approximating Sg(xD, tD) by our neural network that we call Sθ:
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Parameter Gas Water
End-point relative permeability - k0

rj 0.7 1.0
Relative permeability shape parameter - nj 2.0 2.0
Residual saturation - Sjr 0.0 0.2
Viscosity - µj 0.2 1.0

Table 4.2: Multiphase parameters used to generate the relative permeabilities
for the problem. The sub-index j corresponds to g (gas) or w (water).

Nθ = ∂Sθ

∂tD

+ ∂fg(Sθ)
∂xD

. (4-9)

Once N is defined, it can be obtained by leveraging the automatic
differentiation capability of PyTorch. The set of hyperparameters in Sθ can
then be learned my minimizing the loss:

L = Lcp + Lbc + Lic, (4-10)
where

Lcp(θ) = 1
Ncp

Ncp∑
k=1

|Nθ(xk
cp, tk

cp)|2, (4-11)

Lbc(θ) = 1
Nbc

Nbc∑
k=1

|Nθ(xk
bc, tk

bc) − N k
bc|2, and (4-12)

Lic(θ) = 1
Nic

Nic∑
k=1

|Nθ(xk
ic, tk

ic) − N k
ic|2. (4-13)

Figure 4.3: Prediction of the PINN
without the diffusive term. The
analytical solution is in dashed line
and the prediction is the solid line.

Figure 4.4: Evolution if the loss
function in each training step.
We can see the loss function
Lcp, Lic, Lbc and L that is the sum
of all three.

Figure 4.3 shows that our PINN is not able to accurately predict the
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shock. Interestingly, at late times where no shock is present, PINN has no
problem predicting the solution. In Figure 4.5 we experimented adding a
diffusive term to Equation 4-9 such that it is written as:

Nθ = ∂Sθ

∂tD

+ ∂fg(Sθ)
∂xD

− λ
∂2Sθ

∂x2
D

, (4-14)

where λ is a hyperparameter that we choose to be as written in Table 4.1
following the study of (FUKS; TCHELEPI, 2020).

Figure 4.5: Prediction of the PINN
without the diffusive term. The
analytical solution is in dashed line
and the prediction is the solid line.

Figure 4.6: Evolution if the loss
function in each training step.
We can see the loss function
Lcp, Lic, Lbc and L that is the sum
of all three.

These results are very close to the ones in (ALMAJID; ABU-ALSAUD,
2020), so we proceed to use this architecture on following cases. In the next
section, we introduce the chromatographic equations to the problem and solve
them with PINN with and without the diffusive term to compare the results.

4.3
No Volume Change Equations

With the motivation of the previous case, we will use the chromato-
graphic approach displayed in chapter 2 of two-phase flow with no volume
change on mixing. For this problem, we use a simple two-phase flow problem,
displacement of an oil by a gas. Consider the flow function with two com-
ponents: a one-dimensional flow in which a gas, displaces an oil containing a
liquid hydrocarbon. In this situation, some of the liquid vaporizes into the gas
phase, and some of the gas dissolves in the liquid phase, indicating limited
mutual solubility between the components. As seen before, this problem is a
generalization of the Buckley-Leverett problem of oil displacement by water
(BUCKLEY; LEVERETT, 1942).
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If the displacement pressure is high enough, then the volume occupied by
a component in the gas phase may not change greatly when that component
transfers to the liquid phase. Components in the liquid/liquid systems that
describe surfactant flooding processes also exhibit minimal volume change on
mixing. In such systems, it is reasonable to assume that the partial molar
volume of each component is a constant (independent of composition or phase)
and hence that ideal mixing applies. In other words, the volume occupied by a
given amount of a component is constant no matter what phase the component
appears in.

The overall volume fraction (C) and fractional volumetric flow (F ) PDE
for a two-component problem reduces to the equations given by Equation 2-25
and Equation 2-26:

C = c1S + c2(1 − S), and (4-15)

F = c1f + c2(1 − f), (4-16)

where C and F are the overall volume fraction and overall fractional volumetric
flow of component 1 (CO2), respectively, c1 and c2 are the equilibrium phase
compositions, S is the saturation and f is the fractional flow function of gas
phase, respectively. Therefore the system of this problem reduces to a single
quasi-linear equation: ∂C

∂tD

+ ∂F

∂C

∂C

∂xD

= 0. (4-17)

The equilibrium phase compositions, c1 and c2, are fixed by the assump-
tion of local chemical equilibrium and the value of each constant is described
in Table 4.3. The fractional flow function is given by:

f = krg/µg

krg/µg + kro/µo

, (4-18)

where krg and kro are the relative permeability and µg and µo are the viscosity
of each phase. The relative permeability functions are described by the Corey
type curves given by Equation 4-7 and Equation 4-8:

kr1 = 0, S < Sgc,

kr1 =
(

S − Sgc

1 − Sgc − Sor

)2

, Sgc < S < 1 − Sor, (4-19)

kr1 = 1, S > 1 − Sor,
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Parameters Values
Residual Oil Saturation - Sor 0.10
Critical Gas Saturation - Sgc 0.05
Injection of gas - Cinj 1.0
Volume percent of CO2 - Cinit 0.05
Equilibrium of gas phase (%) - c1 0.95
Equilibrium of liquid phase (%) - c2 0.20
Mobility Ratio - M 2

Table 4.3: Multiphase parameters used to solve the fractional flow problem
using the Method of Characteristics and PINN.

and

kr2 = 0, 1 − S < Sor,

kr2 =
(

1 − S − Sor

1 − Sgc − Sor

)2

, Sgc < S < 1 − Sor, (4-20)

kr2 = 1, 1 − S > 1 − Sgc,

where Sgc represents a critical gas saturation, below which the vapor phase
has zero relative permeability. Similarly, Sor is a residual oil saturation. When
the liquid saturation is less than Sor, the liquid phase relative permeability is
zero.

The phase viscosities are fixed, because the phase compositions are
fixed (local equilibrium hypothesis), and the phase relative permeabilities
are assumed to be functions of saturation only. Therefore, the value of C

determines the value of F , because F depends only on f , which depends only
on S, which in turn depends only on C as we can see if we rearrange the
Equation 4-15:

S = C − c2

c1 − c2
, (4-21)

and with that we can see the plot of the curve F (C) in Figure 4.7.
Substitution of Equation 4-19 and Equation 4-20 into Equation 4-18

gives:

f = 0, S < Sgc,

f = (S − Sgc)2

(S − Sgc)2 + (1 − S − Sor)2/M
, Sgc < S < 1 − Sor, (4-22)

f = 1, S > 1 − Sor,

where M is the viscosity ratio µo

µg

.
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Figure 4.7: Overall Flow curve
F (C).

Figure 4.8: Derivative of Overall
Flow curve.

If we substitute Equations 4-22 into Equation 4-16 we can get F with
respect to C and this result is plotted in Figure 4.7. Within the two-phase
region in Figure 4.7 , the fractional flow function has the typical S-shape often
seen in measured fractional flow curves.

To find ∂F

∂C
we need to differentiate Equation 4-22 with respect to C:

dF

dC
= (c1 − c2) df

dC
, (4-23)

and here as Equation 4-21 shows S as a function of C, we can derive it:

(c1 − c2) df

dC
= (c1 − c2) df

dS

dS

dC
, (4-24)

and finally, as we have in Equation 4-21 that dS

dC
= 1

c1 − c2 , we find that:

dF

dC
= df

dS
. (4-25)

Therefore the Equations 4-22 can be differentiated to obtain expressions
for df

dS
and using the method of characteristics (RHEE; ARIS; AMUNDSON,

1986; RHEE; ARIS; AMUNDSON, 1989), we can get the resulting values of
dF

dC
, plotted in Figure 4.8.



Chapter 4. Solving Volume Change Equations Using a Physics Informed Neural
Network 35

dF

dC
= 1, 0 < C < a, S = 0,

dF

dC
= 0, a < C < b, 0 < S < Sgc,

dF

dC
= df

dS
, b < C < c, Sgc < S < 1 − Sor, (4-26)

dF

dC
= 0, c < C < d, 1 − Sor < S < 1,

dF

dC
= 1, d < C < 1, S = 1,

where

a = c2,

b = Sgc(c1 − c2) + c2,

c = Sor(c2 − c1) + c1,

d = c1.

The method of characteristics is essential to help us to get the analytical
solution of the PDE so we can create a "measure stick" that will help us to
check if the results are consistent. To complement this method, we also use the
Welge approximation. This approach is well-known for the case of Water/Oil
displacement where the two fluids are incompressible.

Now, we utilize PINN to estimate the concentration profile C(xD, tD)
along the dimensionless time and distance of the system. In a similar processed
as presented before, we begin by defining Nθ(xD, tD) to be the left-hand side
of Equation 4-17:

Nθ(xD, tD) = ∂Cθ

∂tD

+ ∂F (Cθ)
∂xD

. (4-27)

The solution C(tD, xD) to the PDE is approximated by the PINN
parameterized by the set of parameters θ as in Equation 4-1, Equation 4-2
and Equation 4-3 with the activation function σ being the hyperbolic tangent
function and the set of hyperparameters are described in Table 4.4. In this
case, as C is a function of the saturation S, the neural network will be Sθ. It
will learn the parameters to approximate the function S and we can use the
constants c1 and c2 to get Cθ.

Now we define the loss function used to train the PINN. Let the loss L
be composed of three components described as:

L(θ) = Lcp(θ) + Lbc(θ) + Lic(θ), (4-28)
where Lbc(θ) is the mean squared error from the boundary conditions, Lic(θ)
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Hyperparameters Values
Hidden-layers (L − 2) 6
Neurons per layer (Nl) 20
Epochs 20000
Diffusive term (λ) 0.005

Table 4.4: Hyperparameters used in the architecture of PINN.

is the mean squared error from the initial conditions and Lcp(θ) is the mean
squared error from the residual evaluated at collocation points within the
physical domain:

Lcp(θ) = 1
N

Ncp∑
k=1

|Nθ(xk
cp, tk

cp)|2, (4-29)

Lbc(θ) = 1
N

Nbc∑
k=1

|Cθ(xk
bc, tk

bc) − Ck
bc|2, and (4-30)

Lic(θ) = 1
N

Nic∑
k=1

|Cθ(xk
ic, tk

ic) − Ck
ic|2, (4-31)

where {(xk
ic, tk

ic), Ck
ic}

Nic
k=1, and {(xk

bc, tk
bc), Ck

bc}
Nbc
k=1 represent the training data

on initial and boundary conditions while {xk
cp, tk

cp}Ncp

k=1 denotes the collocation
points for the residual, Nθ(xD, tD), sampled randomly throughout the domain
of interest.

Figure 4.9: Prediction of the neural
network in solid line vs the Ana-
lytical Solution by the method of
characteristics in dashed line.

Figure 4.10: Evolution if the loss
function in each training step.
We can see the loss function
Lcp, Lic, Lbc and L that is the sum
of all three.

In Figure 4.9, the neural network fails to catch the position of the shock in
the solution. It predict a little behavior of the solution when the dimensionless
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distance xD is less than the position of the shock for each tD. Besides that, is
interesting that to xD close to zero, as we talk before, exists a discontinuity
in the solution due to the initial and boundary conditions, but the PINN tries
to catch this discontinuity and shows a more "convex behavior" than the true
solution.

As before, now we implement a diffusive term to Equation 4-27. The new
residual function N is written as:

N (xD, tD) = ∂Cθ

∂tD

+ ∂F (Cθ)
∂xD

− λ
∂2Cθ

∂x2
D

, (4-32)

where λ is a hyperparameter that we choose to be 0.003.
Figure 4.11 shows the results after adding this diffusive term. When

compared to case without diffusion, the predictions match the true solution
much better and the rate at which the shock moves seems to be more accurately
matched with the addition of the diffusive term. In all three tD that we tested
the PINN predict the position of the shock very accurately. Also curiously in
xD closes to zero, the solution approaches the initial condition in all times. In
general, we observe a greatly improvement in this specific case.

Figure 4.11: Prediction of the neu-
ral network with diffusion term.
The solid line is the prediction of
PINN and the Analytical Solution
by the method of characteristics is
in dashed line.

Figure 4.12: Evolution if the loss
function in each training step.
We can see the loss function
Lcp, Lic, Lbc and L that is the sum
of all three.

Now we explore even more the limits of our neural network. We add the
effects of volume change into the loss function, developed in chapter 2. To
incorporate this phenomena, we have to dive in a more realistic case, where
the components, and some properties of the medium are introduced.
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4.4
Volume change Equations

The effect of pressure and temperature on the densities of liquids and
solids is small. The compressibility for a typical liquid or solid is 10−6 bar−1

(1 bar = 0.1 MPa) and a typical thermal expansivity is 10−5 per Kelvin.
That roughly means that is necessary around ten thousand times atmospheric
pressure to reduce the volume of a typical liquid or solid just by one percent.

On the other hand, the density of gases is strongly affected by pressure.
Each component has an specific molar density that varies with temperature
and pressure by the following relation known as ideal gas law (SMITH et al.,
2020):

ρ = MP

RT
, (4-33)

where M is the molar mass, P is the pressure, R is the universal gas constant,
and T is the absolute temperature.

An ideal gas is a theoretical model in physics and chemistry which
describes the simplified behavior of an gas in ideal conditions. From a realistic
point of view there is a difference between a real gas and an ideal gas. This
deviation, in literature, is called compressibility factor (Z). It is simply defined
as the ratio of the molar volume of a gas to the molar volume of an ideal gas
at the same temperature and pressure (SMITH et al., 2020):

Z = MP

ρRT
, (4-34)

where, for an ideal gas, Z = 1 by definition.
At high pressures, molecules are colliding more often. This allows repul-

sive forces between molecules to have a noticeable effect, making the molar
volume of the real gas greater than the molar volume of the corresponding
ideal gas, which causes Z to exceed one. Similarly, when pressures are lower,
the molecules are free to move. In this case, attractive forces dominate, making
Z less than 1.

As ρ = M/V , we can substitute this relation in Equation 4-33 to get the
following:

V = RT

P
. (4-35)

This also means that, if a gas displaces oil at high pressure, it occupies
much less volume when dissolved in a liquid phase than it does in a vapor
phase. In systems like this, the local flow velocity can vary substantially over
the displacement length (DINDORUK, 1992; DUMORÉ; HAGOORT; RIS-
SEEUW, 1984). Thus, for this gas displacement problem, it will be important
to include the effects of volume change on mixing.
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Fluid xCO2 xC10
ρ

(g/cm3)
Initial Oil 0 1 0.6869

Equilibrium Oil 0.2733 0.7267 0.6810
Equilibrium Gas 0.9976 0.0024 0.0610

Injected Gas 1 0 0.0605

Table 4.5: Peng-Robinson Equilibrium Phase Compositions and Fluid Proper-
ties at 34 atm and 71 C.

To illustrate how volume change affects flow behavior, we need to
calculate the molar density of the components to proceed with an example.
So we consider the displacement of a hydrocarbon, decane (C10), by a gas,
carbon dioxide (CO2), at 34 atm and 71 C. Table 4.5 reports the Peng-
Robinson equilibrium phase compositions and the initial injection and phase
molar densities.

In Equation 4-17, the local flow velocity is considered constant every-
where and equal to the injection velocity, so vD = 1. Furthermore, the volume
occupied by component i in one mole of phase j is xij/ρci, and the volume
fraction of component i in phase j is

cij = xij/ρci∑2
k=1 xkj/ρck

, (4-36)

where here we assumed that each component has a constant molar density ρci.
Considering changing on those values, the Equation 4-17 changes to:

∂

∂t

2∑
j=1

xijρjDSj + ∂

∂x
vD

2∑
j=1

xijρjDfj = 0. (4-37)

The notation of Equation 4-37 can be simplified by defining two addi-
tional functions, Gi and Hi, as:

Gi =
2∑

j=1
xijρjDSj, and (4-38)

Hi =vD

2∑
j=1

xijρjDfj, (4-39)

where Gi is an overall concentration (in moles per unit volume) of component
i and Hi is an overall molar flow of component i. Finally the multicomponent
equations for multiphase convection is, therefore,

∂Gi

∂tD

+ ∂Hi

∂xD

= 0, i = 1, 2, (4-40)

The phase compositions, viscosities and moles are fixed, so phase relative
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permeabilities (Equations 4-19 and 4-20) are functions of saturation only.
Rearranging the Equation 4-38 we have:

Si = Gi − xi2ρ2D

xi1ρ1D − xi2ρ2D

, (4-41)

The characteristic equations can now be obtained just as they were in the
previous example Equations 4-26. Arguments similar to those given indicate
that H1 is a function of G1 only, and hence,

∂G1

∂t
+ dH1

dG1

∂G1

∂x
= 0, (4-42)

considering x(η) and t(η) we have:

dG1

dη
= ∂G1

∂x

∂x

∂η
+ ∂G1

∂t

∂t

∂η
, (4-43)

and therefore, with Equation 4-42 and Equation 4-43 we have the characteristic
equations:

dG1

dη
= 0,

dt

dη
= 1, (4-44)

dx

dη
= dH1

dG1
.

Differentiation of Equation 4-39 gives:
∂H1

∂G1
= vD(x11ρ1D − x12ρ2D) ∂f1

∂G1
, (4-45)

and substituting Equation 4-41 we have:
∂f1

∂G1
= ∂f1

∂S1

∂S1

∂G1
= 1

x11ρ1D − x12ρ2D

∂f1

∂S1
. (4-46)

Therefore, we have the relation:
∂H1

∂G1
= vD

∂f1

∂S1
. (4-47)

Hence for compositions within the two-phase region, the wave velocity
is the wave velocity for constant volume flow scaled by the appropriate local
flow velocity within the two-phase region.

The distinction between flow velocity and wave velocity is an important
one. The flow velocity is the total volumetric flow rate of all the phases per unit
area. The wave velocity is the speed at which a given composition propagates.
When volume is not conserved, the flow velocity does not change when the
composition varies along a single tie line, but it does change at shocks that enter
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or leave the two-phase region. In other words, there are three flow velocities:
The injection flow velocity (vinj) which is given, changes instantaneously when
the flow enters in the reservoir; this flow velocity in the two-phase region
remains constant; and a different flow velocity appears ahead of the leading
shock. The calculations of these velocities are outside of the scope of this work.
But we can expect a decreasing flow velocity. As a result, C10 is recovered much
more slowly after the arrival of the leading shock at the outlet.

As before, lets defining the residual function Nθ(xD, tD). Unlike the
previous cases, this time we have two PDEs to handle. This means that to
each pair (xD, tD) we have a vector defined as:

Nθ(xD, tD) =
(

∂G1

∂tD

+ ∂H1

∂xD

,
∂G2

∂tD

+ ∂H2

∂xD

)
, (4-48)

where the neural network solution Sθ parametrized by θ will learn the param-
eters so we can use all constants to get Gθ

1 and Gθ
2.

Despite Nθ(xD, tD) being a vector, the loss function L is composed in the
same way as before:

L(θ) = Lcp(θ) + Lbc(θ) + Lic(θ), (4-49)
where Lb(θ) is the mean squared error from the boundary conditions, Li(θ)
is the mean squared error from the initial conditions and Lf (θ) is the mean
squared error from the residual evaluated at collocation points:

Lcp(θ) = 1
N

Ncp∑
k=1

∥Nθ(xk
cp, tk

cp)∥2, (4-50)

Lbc(θ) = 1
N

Nbc∑
k=1

∥
(
Gθ

1(xk
bc, tk

bc) − Gk
1,bc, Gθ

2(xk
bc, tk

bc) − Gk
2,bc

)
∥2, (4-51)

Lic(θ) = 1
N

Nic∑
k=1

∥
(
Gθ

1(xk
ic, tk

ic) − Gk
1,ic, Gθ

2(xk
ic, tk

ic) − Gk
2,ic

)
∥2, (4-52)

where {(xk
ic, tk

ic), Gk
1,ic, Gk

2,ic}
Nic
k=1, and {(xk

bc, tk
bc), Gk

1,bc, Gk
2,bc}

Nbc
k=1 represent the

training data on initial and boundary conditions while {xk
cp, tk

cp}Ncp

k=1 denotes the
collocation points for the residual, Nθ(xD, tD), sampled randomly throughout
the domain of interest.

In this case, before train our neural network, we implement the diffusive
term into Equation 4-48. The residual function turns into:

Nθ(xD, tD) =
(

∂G1

∂tD

+ ∂H1

∂xD

− λ
∂2G1

∂x2
D

,
∂G2

∂tD

+ ∂H2

∂xD

− λ
∂2G2

∂x2
D

)
. (4-53)

Figure 4.13 shows the comparison between the PINN solution and the
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Figure 4.13: Prediction of the neu-
ral network of the Volume Change
equations in solid line versus the
analytical solution by MOC in
dashed line. In this case, the frac-
tional flow curve was assumed to be
Equations 4-22, with Sor = Sgc =
0.

Figure 4.14: Evolution of Lcp, Lic,
Lbc and L in each training step.

analytical obtained by MOC. As previous cases, the neural network give us
consistent results. The initial and boundary conditions are seen in the solution
as well as the position of the shock. In this training process, the minimal value
of the loss function we get was 10−3.

Using the PINN architecture proposed in this study, we observed similar
loss values to the ones obtained by the study of (FUKS; TCHELEPI, 2020).
This is a great improvement since they use observed data to improve their
training process and we do not. Figure 4.4 shows the evolution of the loss
function in each training step when we do not include the diffusive term.
Figure 4.6 shows the same evolution but with the diffusive term included.

To the second case, the implementation of the diffusive term is of a big
importance to improve the results of the PINN solution. A we can see in
Figure 4.12, we could get an an loss value orders of magnitude better than the
solution without this term (Figure 4.10).

Based in those cases, we observe that the diffusive term λ is crucial
for the convergence of the PINN solution. Then, so we implement this term
without testing without it before for the problem. In Figure 4.14 we can see
the evolution of each term of the loss function in this case.

In the next chapter, we will discuss what we found and concluded from
this study. We will discuss our expectations and accomplishments. Then, we
will also outline our plans for future research efforts.
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5
Conclusion

The results in (DIAB; AL-KOBAISI, 2021) are surprising. However, the
authors added a wrong diffusion term (1×10−3) instead of the one suggested by
(FUKS; TCHELEPI, 2020) (not less than 2.5×10−3), and this can be a reason
to not get an optimal convergency. They also incorporated observational data
into the PINN. This allows the network predict the behavior of the solution
very effectively.

Motivated by problems like those seen in (RAISSI, 2017b), we remove
the external data and construct a neural network to solve the equation given in
(ALMAJID; ABU-ALSAUD, 2020) with only initial and boundary conditions.
We get losses similar to the ones achieved by the authors.

Using an approach called chromatography presented by (ORR, 2007),
we implemented more realistic gas injection processes in reservoirs. This study
leads us to the second case of this work. At first we do not implement the
volume change equations, just to see the potential of the architecture proposed
in this work. We observe a great improvement of the training just observing
the evolution of the loss functions. In addition to decreasing the variance of the
values of the loss function, we reduced these values by orders of magnitude.

By implementing the volume change equations, which transformed the
residual function into a vector function, we obtained a result very close to that
described in (ORR, 2007). Based on previous cases, we note that the diffusion
term was necessary to the PINN solution converge to the true solution, so we
implement this term at first time, and get promising results.

For future work, some enhancements may be implemented to the PINN
approach. In (COUTINHO et al., 2023), the authors implement the parameter
λ as trainable in the neural network. Their study proposes three methods to
add this term, called artificial viscosity. This method seems to be appropriated
for solving hyperbolic PDEs with shocks using PINN.

Another topic to be implemented in the training process is described
in (WANG; SANKARAN; PERDIKARIS, 2022). They reformulate the loss
function as follows

L(θ) = ωcpLcp(θ) + ωbcLbc(θ) + ωicLic(θ),
where ωcp, ωbc, and ωic are hyperparameters that allow the flexibility of
assigning a different learning rate to each loss term to balance their interplay
during model training. They show that this implementation works for different
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types of PDEs, increasing cost but improving learning.
In actual field-scale gas injection projects, the flow is never one-

dimensional. Therefore, many additional factors influence the performance of
these multidimensional flows: viscous instability, gravity segregation, reservoir
heterogeneity, and crossflow due to viscous and capillary forces. All of these
factors can be introduced into the equations to provide more realistic solutions
(ORR, 2007).
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A
PINN architecture
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