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Abstract

de Melo Machado, Aline; Klein, Silvius (Advisor). Markovian,
quasiperiodic and mixed dynamical systems. Rio de Janeiro,
2023. 101p. Tese de Doutorado – Departamento de Matemática,
Pontifícia Universidade Católica do Rio de Janeiro.

We study several models of base dynamics and linear cocycles over such
systems. We establish effective rates of convergence of the Birkhoff averages of
toral translations. We derive large deviations estimates for mixed Markov-
quasiperiodic dynamics. We prove continuity properties of the Lyapunov
exponents of linear cocycles over Markov shifts. Besides their intrinsic interest,
these results prepare the ground for a larger project concerned with the study
of linear cocycles over mixed Markov-quasiperiodic base dynamics. As crucial
steps in this study, we obtain a version of Kifer’s non random filtration and
an upper large deviations estimate for such systems.

Keywords
Linear Cocycle; Lyapunov exponent; Birkhoff averages; Large deviations

estimates; Markov system.
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Resumo

de Melo Machado, Aline; Klein, Silvius. Sistemas dinâmicos
markovianos, quase periódicos e mistos. Rio de Janeiro, 2023.
101p. Tese de Doutorado – Departamento de Matemática, Pontifícia
Universidade Católica do Rio de Janeiro.

Estudamos vários modelos de dinâmica de base e cociclos lineares so-
bre tais sistemas. Estabelecemos taxas efetivas de convergência das médias de
Birkhoff de translações do toro. Obtemos estimativas de grandes desvios para
dinâmicas mistas Markov-quase periódicas. Provamos propriedades de conti-
nuidade dos expoentes de Lyapunov de cociclos lineares sobre deslocamentos de
Markov. Além do interesse intrínseco, estes resultados preparam o terreno para
um projeto maior voltado para o estudo de cociclos lineares sobre dinâmica
de base mista Markov-quase periódica. Como passos essenciais neste estudo,
obtemos uma versão da filtração não aleatória de Kifer e uma estimativa de
grandes desvios por cima para tais sistemas.

Palavras-chave
Cociclo linear; Expoente de Lyapunov; Média de Birkhoff; Estimativas

de grandes desvios; Sistema de Markov.
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1
Introduction

We study limiting properties of additive and multiplicative processes
associated to the iterates of Markov shifts, toral translations and skew products
thereof.

Let M be a compact metric space, let f : M → M be a continuous
transformation and let ν be an f -invariant, ergodic probability measure on M .

Given a continuous observable φ : M → R, let

φ(n)(x) := φ(x) + φ(f(x)) + · · · + φ(fn−1(x))

bet its n-th Birkhoff sum relative to the ergodic system (M, f, ν).
By the additive ergodic theorem, the Birkhoff averages 1

n
φ(n)(x) converge

to the space average
∫

M
φdν for ν-a.e. x ∈ M . In particular, the convergence

also holds in measure, that is, for all ε > 0,

ν
{
x ∈ M :

∣∣∣∣ 1nφ(n)(x) −
∫

M
φdν

∣∣∣∣ > ε
}

→ 0 (1.1)

as n → ∞.
When, for an appropriate class of observables, the above convergence has

a certain rate, ideally exponential, we say that our ergodic system satisfies large
deviations estimates (LDE). Such estimates are already available for various
systems with some (non uniform) hyperbolicity, see [9].

At the other end of ergodic behavior, in the case of the torus translation,
because of its unique ergodicity, the convergence in the ergodic theorem is
uniform, so for n large enough, the measure of the set in (1.1) is zero. The
question is then if, under appropriate assumptions, there is an effective uniform
rate of convergence of the Birkhoff averages for this model.

Let T = R/Z be the one dimensional torus endowed with the Lebesgue
measure m and let T : T → T, Tx = x + ω be the translation on T
by an irrational frequency ω. Assume that ω satisfies the following generic
Diophantine condition.

dist(kω,Z) ≥ γ

|k| log2 (|k| + 1)
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Chapter 1. Introduction 10

for some γ > 0 and for all k ∈ Z \ {0}.
The first result of this work is the following sharp convergence rate of

the Birkhoff sums for Hölder continuous observables.

Theorem 1.0.1 Assume that the observable φ is an α-Hölder continuous
function on T and that the frequency ω ∈ T satisfies the Diophantine condition
above. Then for all integers N we have∥∥∥∥ 1

N
φ(N) −

∫
T
φ

∥∥∥∥
∞

≤ const
(

1
γ

log 1
γ

)
∥φ∥α

log3α N

Nα
(1.2)

where const is a universal constant and ∥φ∥α is the α-Hölder norm of φ.

A similar but less sharp result also holds for the higher dimensional torus
translation.

We say that ω ∈ Td(d ≥ 1) satisfies a Diophantine condition if there
exist γ > 0 and A > d such that

∥k · ω∥ = dist (k · ω, Z) ≥ γ

|k|A

for all k ∈ Zd with |k| ≠ 0.

Theorem 1.0.2 Let φ be an α-Hölder continuous function on Td, let ω ∈ Td

be a frequency that satisfies the Diophantine condition above and let Tω : Td →
Td be the corresponding torus translation. Then for all N ≥ 1 we have

∥∥∥∥ 1
N
ϕ(N) −

∫
Td
ϕ
∥∥∥∥

∞
≤ const

γ
∥ϕ∥α

1
Nβ

where β = α
A+d

.

With the behavior of the Birkhoff sums of both predominantly hyperbolic
and deterministic (i.e. toral translations) systems well understood, it is natural
to consider mixed models, i.e., certain skew products combining hyperbolic and
deterministic systems, such as the direct product between a (strongly mixing)
Markov shift and a torus translation.

Let Σ be a compact metric space and let Prob(Σ) be the space of
probability measures on Σ, endowed with the weak* topology. Consider a
Markov transition kernel on M , that is, a continuous map M ∋ x 7→ Kx ∈
Prob(Σ). We assume that K is uniformly ergodic, in the sense that its powers
converge uniformly in the total variation norm. In particularK admits a unique
stationary measure µ ∈ Prob(Σ). We refer to (Σ, K, µ) as a Markov system.

Let X = ΣZ, let P be the Markov measure on X with initial distribution
µ and transition kernel K and let σ : X → X be the forward shift. Then
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Chapter 1. Introduction 11

(X, σ,P) is an ergodic system that we call a Markov shift. This generalizes the
concept of subshift of finite type. It is well known that such systems satisfy
large deviations estimates, see for instance [30] and [7].

Given α ∈ Td rationally independent, consider the product map

f(ω, θ) = (σω, θ + α).

It turns out that (X×Td, f,P×m) is an ergodic system, which we call a mixed
Markov quasiperiodic system.

We establish a large deviations estimate for such systems with observables
that depend on a finite number of coordinates.

Theorem 1.0.3 Let K be a uniformly ergodic Markov kernel on Σ, let µ be
its unique stationary measure and let P be the Markov measure on X = ΣZ.
Let φ : X×Td → R be a continuous observable that depends on a finite number
of coordinates of ω ∈ X. Given any ε > 0, there exist n̄ = n̄(ε, ϕ) ∈ N and
c = c(ε, ϕ) > 0 such that for all θ ∈ Td and for all n ≥ n̄, we have

P

ω ∈ X :

∣∣∣∣∣∣ 1n
n−1∑
j=0

ϕ(f j(ω, θ)) −
∫

X×Td
ϕ d(P ×m)

∣∣∣∣∣∣ ≥ ε

 < e−cn .

It would, of course, be interesting to consider the more general case of
observables that depend on all coordinates.

An even more complex type of dynamical system is given by linear
cocycles over a base ergodic system (M, f, ν). A continuous map A : M →
GLm(R) determines the linear skew product F : M × Rm → M × Rm,

F (x, v) = (f(x), A(x)v).

This new dynamical system is called a linear cocycle and its iterates are given
by

F n(x, v) = (fn(x), A(n)(x)v),

where
A(n)(x) = A(fn−1(x)) · · ·A(f(x))A(x)

are refered to as fiber iterates.
Some important examples of linear cocycles are: quasiperiodic cocycles

(i.e. linear cocycles over a torus translation); random cocycles (i.e. linear
cocycles over a Bernoulli shift); Markov cocycles (i.e. linear cocycles over
a Markov shift); mixed random-quasiperiodic cocycles (i.e. linear cocycles
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Chapter 1. Introduction 12

over a skew product between a Bernoulli shift and toral translations) and
mixed Markov-quasiperiodic cocycles (i.e. linear cocycles over a mixed Markov-
quasiperiodic map).

By the subadditive ergodic theorem (or by Furstenberg-Kesten’s theo-
rem), the geometric averages 1

n
log ∥A(n)(x)∥ converge for ν-a.e. x ∈ M to a

constant L1(F ) called the maximal Lyapunov exponent of F .
The other Lyapunov exponents L2(F ), . . . , Lm(F ) are defined similarly,

changing the norm (or largest singular value) of the fiber iterates A(n)(x) by
the other singular values.

Definition 1.0.1 We say that the linear cocycle A satisfies a fiber large
deviations estimate if for every ε > 0 there exist c(ε) > 0 and n(ε) ∈ N
such that

µ{x ∈ M :
∣∣∣∣ 1n log ∥A(n)(x)∥ − L1(F )

∣∣∣∣ > ε} < e−c(ε)n (1.3)

for all n ≥ n(ε).

An important question in dynamical systems concerns the continuity
properties at these limiting quantities, the Lyapunov exponents, as functions
of the input data.

Results on the continuity of the Lyapunov exponents are available for
several models. See for instance: [10, Chapter 6] for Hölder continuity results
for quasiperiodic cocyles; [10, Chapter 5], [11] and [3] for continuity results for
random cocycles; [10, Chapter 5] for continuity with respect to the the fiber
map A of Lyapunov exponents of Markov cocycles and [6] and [2] for continuity
of Lyapunov exponent for mixed random-quasiperiodic.

We establish the joint Hölder continuity of the maximal Lyapunov
exponent of Markov cocycle (as a function of the fiber map and the transition
kernel), under a generic (irreducibility) assumptions.

More precisely, let (Σ, K, µ) be a Markov system, let A : Σ × Σ →
GLm(R) be a fiber map and consider the corresponding Markov cocycle
F = F(A,K) : X × Rm → X × Rm,

F (ω, v) = (σω,A(ω1, ω0)v),

where ω = {ωn}n∈Z ∈ X = ΣZ.

Definition 1.0.2 The Markov cocycle F(A,K) is called irreducible if there is
no proper invariant section under the fiber dynamics.

Theorem 1.0.4 Let A : Σ × Σ → GLm(R) be a Lipschitz continuous cocycle
and let K : Σ → Prob(Σ) be a uniformly ergodic Markov kernel. Assume that:
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Chapter 1. Introduction 13

(i) the cocycle F(A,K) is irreducible,

(ii) L1(A,K) > L2(A,K).

Then the map (A,K) 7→ L1(A,K) is locally Hölder continuous.

An important motivation for part of this work, and a longer term project,
concerns the study of linear cocycles over mixed Markov-quasiperiodic base
dynamics. This projects was inspired by the ongoing work of Cai, Duarte and
Klein on the stability under random noise of quasiperiodic systems (see [5],
[6] and [7] for partial results in this direction). Other interesting results were
recently obtained for related models by Bezerra and Poletti [2], Goldsheid [14]
and by Gorodetski and Kleptsyn [15].

We are interested in deriving large deviations estimates for mixed
Markov-quasiperiodic cocycles as well as continuity properties of their Lya-
punov exponent. It turns out that these two problems are related. By an ab-
stract continuity theorem of the Lyapunov exponents in [10, Chapter 3], the
availability of LDE that are uniform in the data imply the Hölder continuity
of the Lyapunov exponent for any space of cocycles over any base dynamics.

In this work, we derive an upper fiber LDE for such mixed cocycles.
Let (Σ, K, µ) be a Markov system, let (X, σ,P) be the corresponding

Markov shift and let α ∈ Td be rationally independent. Given a continuous
fiber map A : Σ×Σ×Td → GLm(R), consider the corresponding mixed Markov-
quasiperiodic cocycle F : X × Td × Rm → X × Td × Rm,

F (ω, θ, v) = (σω, θ + α,A(ω1, ω0, θ)v),

where ω = {ωn}n∈Z ∈ X = ΣZ.

Theorem 1.0.5 Given a mixed Markov-quasiperiodic cocycle F as above, for
any ε > 0 there are n̄ = n̄(ε) ∈ N and c = c(ε) > 0 such that for all θ ∈ Td

P
{
ω : 1

n
log ∥A(n)(ω, θ)∥ > L1(F ) + ε

}
< e−c(ε)n

for all n ≥ n̄(ε).

This result, together with the large deviations estimates on the base (1.1),
the uniform convergence (1.2) and other more technical results, like a version
of Kifer’s non-random filtration, prepare the ground for the completion of the
aforementioned larger project.

The rest of this work is organized in six chapters as follows.
In Chapter 2 we review basic notions in ergodic theory, such as the

concepts and examples of ergodic systems and the Markov operator associated
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Chapter 1. Introduction 14

to a Markov transition kernel. We also recall some important theorems in
ergodic theory: Oseledets’s theorem and Kifer’s non-random filtration theorem.

In Chapter 3 we present the result regarding the rate of convergence of
Birkhoff averages for a Diophantine torus translation with Hölder continuous
observable.

In Chapter 4 we establish and prove a large deviations estimate for
mixed Markov-quasiperiodic dynamical systems with observables depending
on a finite number of coordinates.

In Chapter 5 we obtain the Hölder continuity of the maximal Lyapunov
exponent via a Furstenberg’s formula for linear cocycles over Markov shifts.

In Chapter 6 we obtain an upper large deviations estimate for linear co-
cycles over mixed Markov-quasiperiodic base dynamics, and as a consequence
of that, the upper semi continuity of the maximal Lyapunov exponent.

In Chapter 7 we describe some related future projects.

DBD
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2
General concepts

In this chapter we review the main concepts needed throughout the
work. We begin with the notion of ergodic dynamical system (Section 2.1).
In Section 2.2 we define the general Markov shift and introduce the Markov
operator associated to a Markov transition kernel. In Section 2.3 we define
the concept of linear cocycle and its Lyapunov exponents via the Furstenberg-
Kesten’s theorem. In Section 2.4 we recall the multiplicative ergodic theorem
of Oseledets and state the Kifer non-random filtration theorem, a stronger
version of Oseledets in the setting of linear cocycles over a Bernoulli shift. In
Section 2.5 we introduce the concept of large deviations estimates in dynamical
systems. We conclude this chapter with the statement and proof of a more
general version of Kifer’s non random filtration theorem (Section 2.6).

2.1
Measure preserving dynamical systems

Let (X,B, µ) be a measure space and let T : X → X be a measurable
function.

Definition 2.1.1 We say that µ is a T -invariant measure on X, or that T
preserves µ, if µ(T−1E) = µ(E), for all measurable sets E ∈ B.

Definition 2.1.2 Let T : X → X be a measurable function. We say that
(X,B, µ, T ) is a measure preserving dynamical system if µ is a T -invariant
probability measure.

Definition 2.1.3 Let (X,B, µ, T ) be a measure preserving dynamical system
and let ϕ : X → R be an absolutely integrable function (which we refer to as
an observable).

i) A measurable subset E ⊂ X is said to be T -invariant if T−1E = E.

ii) ϕ : X → R is a T -invariant function if ϕ ◦ T = ϕ, µ-a.e.

Definition 2.1.4 A measure preserving dynamical system (X,B, µ, T ) is said
to be an ergodic system if µ(E) = 0 or µ(E) = 1 for any T -invariant subsets
E ⊂ X.
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Chapter 2. General concepts 16

Definition 2.1.5 We say that a measure preserving dynamical system
(X,µ, T ) is uniquely ergodic if T : X → X is a homeomorphism and µ is
the unique T -invariant probability measure on a metric space X.

Remark 2.1 If (X,µ, T ) is a uniquely ergodic system, then necessarily µ is
ergodic. Indeed, suppose that there exists an invariant subset A in M with
0 < µ(A) < 1. Thus,

µA(E) := µ(E ∩ A)
µ(A)

is a different T -invariant probability measure on X, contradicting the hypoth-
esis that µ is the unique T -invariant measure on X.

We present below examples of ergodic dynamical systems.

Example 2.1 (The Bernoulli shift) Let Σ be a compact metric space and
consider the space of sequences X+ = ΣN. The Bernoulli shift is the map
σ : X+ → X+ defined by σ(x) = {xn+1}n∈N for x = {xn}n∈N. We use the
same notation for its extension to the space X = ΣZ of double sided sequences.
Denote by Prob(Σ) the space of Borel probability measures on Σ.

Given µ ∈ Prob(Σ), the shift maps σ : X+ → X+ and σ : X → X

preserves the product measure µN and µZ respectively. The measure preserving
dynamical system (X,µZ, σ) is called a Bernoulli shift. It turns out that it is
an ergodic system (see Proposition 4.2.7 in [33]).

Example 2.2 (Translation on the d-dimensional torus) Let Td =
(R/Z)d with d ≥ 1 be the d-dimensional torus endowed with the Haar
measure m and also regarded as an additive compact group. Points on Td are
written as θ = (θ1, . . . , θd).

Given a frequency α = (α1, . . . , αd) ∈ Td, define the map

Tα : T → R, Tα(θ) = θ + α

which is called the torus translation map.
We say that a vector α = (α1, . . . , αd) ∈ Rd is rationally independent if,

for any integer numbers n0, n1, . . . , nd, we have that

n0 + n1α1 + · · · + ndαd = 0 ⇒ n0 = n1 = · · · = nd = 0.

Otherwise, we say that α is rationally dependent.
The triple (Td,m, Tα) is a uniquely ergodic system if, and only if, the

components of α are rationally independent (see Proposition 4.2.2 in [33]).
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Chapter 2. General concepts 17

Example 2.3 (The affine skew product on the d-torus) For any di-
mension d ≥ 2 and an irrational number α, let Sα : Td → Td,

Sα(x1, x2, . . . , xd) = (x1 + x2, x2 + x3, . . . , xd + α),

be the skew-translation map.
The map Sα is also an example of uniquely ergodic transformation for

every irrational number α. (see [12]).

Birkhoff’s additive ergodic theorem, one of the most important results
in ergodic theory, states that given an ergodic system, the time average of
an observable along the trajectories converges almost everywhere to the space
average. This result can be formulated as follows (see [33], [18] for the proof).

Theorem 2.1.1 (Birkhof’s Ergodic Theorem for ergodic systems)
Let (X,B, µ, T ) be an ergodic system and let ϕ : X → X be an observable.
Then,

lim
n→∞

1
n

n−1∑
j=0

ϕ(T jx) =
∫

X
ϕ(x) dµ(x)

for µ-a.e. x ∈ X.

2.2
Markov kernels

Let M be a compact metric space and let B be its Borel σ-algebra. Let
Prob(M) denote the space of Borel probability measures on M , which we
endowed with the weak* topology.

Definition 2.2.1 A Markov kernel on Σ is a continuous map K : M →
Prob(M), x 7→ Kx.

The iterates of a Markov Kernel K are defined recursively setting K1 := K
and for n ≥ 2, E ∈ B,

Kn
x(E) :=

∫
X

Kn−1
y (E) dKx(y).

Each power Kn is itself a Markov kernel on (M,B).

Definition 2.2.2 A probability measure ν on (M,B) is called K-stationary if

ν(E) =
∫

Kx(E) dν(x)

for all E ∈ B.
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The above definition means that ν is stationary if ν is Kx-invariant on
average.

Definition 2.2.3 A Markov system is a triple (M,K, ν), where K is a Markov
Kernel on (M,B) and ν is a K-stationary probability measure.

Consider a Markov system (K, ν) on a compact metric space M .

Definition 2.2.4 The linear operator Q = QK : L∞(M) → L∞(M)

(Qf)(x) = (QKf)(x) :=
∫
f(y) dKx(y)

is called a Markov operator. It is easy to verify that

(Qn
Kf)(x) :=

∫
f(y) dKn

x(y)

for all n ≥ 1 and f ∈ L∞(M).

Let (K, ν) be a Markov system. Consider the space X+ = MN of
sequences x = {xn}n∈N with xn ∈ M for all n ∈ N and let B+ be the product
σ-field B+ = BN generated by the B-cylinders. In other words, B+ is generated
by sets of the form

C(E0, . . . , Em) := {x ∈ X+ : xj ∈ Ej, for 0 ≤ j ≤ m},

where E0, . . . , Em ∈ B are measurable sets.

Definition 2.2.5 Given any probability measure θ on (M,B), the following
expression determines a pre-measure

P+
θ [C(E0, . . . , Em)] :=

∫
E0

∫
E1

· · ·
∫

Em

dKxm−1(xm) · · · dKx1(x0) dθ(x0)

on the semi-algebra of B-cylinders. By Carathéodory’s extension theorem this
pre-measures extends to a unique probability measure P+

θ on (X+,B+).

Markov system are probabilistic evolutionary models, which can also be
studied in dynamical terms. Let (K, ν) be a Markov system and X = MZ be
the set of double sided sequences. The one-sided shift is the map σ : X+ → X+

such that σ({xn}n∈N) = {xn+1}n∈N and the two-sided shift is the map σ : X →
X such that σ({xn}n∈Z) = {xn+1}n∈Z. The two-sided shift is the natural
extension of the one-sided shift. Then, there is a unique probability measure
P(K,ν) on (X,B) and we will refer to the measure P(K,ν) as the Kolmogorov
extension of the Markov system (K, ν).
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Definition 2.2.6 Given a Markov system (K, ν) let P(K,ν) be the Kolmogorov
measure on X = MZ. The dynamical system (X,Pν , σ) is called a Markov
system.

We denote by P = P(K,ν) the Markov measure on MN with initial
distribution ν and transition kernel K.

2.3
Linear cocycles and Lyapunov exponents
Definition 2.3.1 A linear cocycle over a base ergodic system (X,µ, T ) is a
skew-product map

FA : X × Rm → X × Rm

(x, v) 7→ (Tx,A(x)v)

where A : X → GLm(R) is a measurable map.

We identify FA with the pair (T,A) or simply with A. Define

A(n)(x) = A(T n−1x) · · ·A(Tx)A(x).

Then the iterates of FA are given by:

F n
A(x, v) = (T nx,A(n)(x)v).

Example 2.4 (Quasiperiodic cocycles) We call quasiperiodic cocycle a
linear cocycle over a torus translation. That is, given α ∈ Td and A : Td →
GLm(R), let F(α,A) : Td × Rm → Td × Rm such that

F(α,A)(θ, v) = (θ + α,A(θ)v) .

For simplicity we identify the quasiperiodic cocycle F(α,A) with the pair
(α,A).

Example 2.5 (Random cocycles) We call random cocycle a linear cocycle
over a Bernoulli shift. That is, given A : M → GLm(R) and X = MZ, let
F = F(A,K) : X × Rm → X × Rm such that

F (ω, v) = (σω,A(ω0)v) .

Example 2.6 (Markov cocycles) We call Markov cocycle a linear cocycle
over a Markov system. That is, given a Markov system (Σ, K, µ), the corre-
sponding (X,P, σ) and given A : M×M → GLm(R), let F = F(A,K) : X×Rm →

DBD
PUC-Rio - Certificação Digital Nº 1821096/CA



Chapter 2. General concepts 20

X × Rm such that
F (ω, v) = (σω,A(ω1, ω0)v) .

Its iterates are given by

F n(ω, v) = (σnω,An(ω)v) ,

where for ω = {ωn}n∈Z ∈ X,

A(n)(ω) = A(ωn, ωn−1) · · ·A(ω2, ω1)A(ω1, ω0) .

Theorem 2.3.1 (Furstenberg-Kesten) Given a µ-integrable cocycle F =
F(T,A) of an ergodic system (X,µ, T ), that is,

∫
X

log+ ∥A(x)∥ dµ(x) < +∞

for µ almost every x ∈ X,

L1(F ) := lim
n→∞

1
n

log ∥A(n)(x)∥.

The number L1(A) is called the first Lyapunov exponent of A.

Furthermore, the Lyapunov exponents of A, denoted by Lk(F ), 1 ≤ k ≤
m, can be characterized as the almost everywhere limits

Lk(F ) := lim
n→∞

1
n

log sk(A(n)(x)),

where sk(An(x)) are the singular values of the matrices A(n)(x).
The Lyapunov exponents depends on the data. In particular, if A is a

quasiperiodic cocycle, we denote the maximal Lyapunov exponent by Li(α,A).
If (A,K) is a Markov cocycle, then we denote by L1(A,K) the first Lyapunov
exponent of A.

2.4
The multiplicative ergodic theorem

Given a measure µ ∈ Prob(GLm(R)), denote by Gµ the closed subgroup
of GLm(R) generated by the support of µ.

Let Gr(Rm) denote the set of all linear subspaces of Rm. In the conext
of GLm(R)-valued cocycles, the Oseledets Multiplicate Ergodic Theorem for
ergodic transformations can be formulated as follows (see [33] for the proof).

Theorem 2.4.1 (Oseledets) Let (X,µ, T ) be an ergodic system, let A : X →
GLm(R) µ-integrable and let FA : X × Rm → X × Rm be the corresponding
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linear cocycle. Then, there exist λ1 > λ2 > · · · > λk ≥ −∞ and a family of
measurable functions Fj : X → Gr(Rm), 1 ≤ j ≤ k, such that for µ-almost
every x ∈ X,

(a) A(x)Fj(x) = Fj(Tx) for j = 1, . . . , k

(b) {0} = Fk+1(x) ⊊ Fk(x) ⊊ . . . ⊊ F2(x) ⊊ F1(x) = X × Rm

(c) for every v ∈ Fj(x) \ Fj+1(x), limn→+∞
1
n

log ∥An(x)v∥ = λj.

The numbers λi are called the distinct Lyapunov exponents of the linear
cocycle. They coincide with the (possibly) repeated Lyapunov exponents given
by the Furstenberg-Kesten’s theorem. In particular, L1 = λ1.

This result improves the Furstenberg-Kesten theorem in that it provides
exponential rates of the convergence for the iterates ∥A(n)(x)v∥ of all vectors,
rather than just for the norm of the matrices.

For random linear cocycles, Kifer [20] obtained a more precise version of
the multiplicative ergodic theorem, where the filtration does not depend on
the base point.

Theorem 2.4.2 (Kifer non-random filtration) Given µ ∈ Prob(GLm(R))
there exists a filtration L = (L0, L1, · · · , Lr) with 0 ≤ r ≤ m,

Rm = L0 ⊋ L1 ⊋ · · · ⊋ Lr−1 ⊋ Lr ⊋ {0}

and there are numbers

β(µ) = β0(µ) > β1(µ) > · · · > βr−1(µ) > βr(µ)

such that for every 0 ≤ j ≤ r

(1) each linear subspace Lj is Gµ-invariant, that is, gLj = Lj for all g ∈ Gµ

(2) for every v ∈ Lj \ Lj+1 and µN-a.e. ω ∈ ΣN,

lim
n→∞

log ∥A(n)(ω)v∥ = βj(µ)

(3) the numbers βj(µ) are the values
∫

Σ

∫
P(Rm)

log ∥gp∥ dν(p̂) dµ(g)

where ν is an extremal point of Probµ(P(Rm)) and Probµ(P(Rm)) is the
space of µ-stationary probability measures.
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(4) for any extremal point ν of Probµ(P(Rm) such that
∫

Σ

∫
P(Rm)

log ∥gp∥ dν(p̂) dµ(g) = βj(µ)

we have ν(L̂j) = 1 and ν(L̂j+1) = 0.

In Section 2.6 we will formulate and prove, following [20], a more general
version of this result, which will be later used to derive Kifer non random
filtration-type theorems for other types of linear cocycles.

2.5
Large deviations

Let (X,B, µ, T ) be an ergodic dynamical system.
As mentioned in Section 2.1, Birkhoff proved that the time average of an

observable along the trajectories exists almost everywhere and converges to the
space average. In particular, this implies the convergence in probability. When
there is a rate of convergence in probability for certain types of observables, we
say that the system satisfies large deviations estimates (LDE). More precisely,

Definition 2.5.1 We say that an observable φ : X → R satisfies a base large
deviations estimate if for every ε > 0, there exist c(ε) > 0 and n(ε) ∈ N such
that

µ{x ∈ X :

∣∣∣∣∣∣ 1n
n−1∑
j=0

φ(T jx) −
∫
φ

∣∣∣∣∣∣ > ε} < e−c(ε)n

for all n ≥ n(ε).

Let A : X → GLm(R) be a linear cocycle over the dynamical system
(X,B, µ, T ).

Large deviations estimates are available for many types of base dynamical
systems, especially for systems with some hyperbolicity (see for instance
Chazottes and Gouëzel [9]).

In the context of uniquely ergodic system, it was proved that the time
average of a continuous observable along the trajectories converges uniformly
to the space average (see p. 160 in [33]).

Since the translation on the torus Tα : Td → Td is uniquely ergodic, the
Birkhoff ergodic theorem implies that

1
n

n−1∑
j=0

φ(T j
αx) →

∫
φ

uniformly in x ∈ Td where φ : Td → R is an observable.
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In particular, ∥∥∥∥∥∥ 1
n

n−1∑
j=0

φ(T j
α(·)) −

∫
φ

∥∥∥∥∥∥
∞

→ 0

so for every ε > 0, there exists n(ε) ∈ N such that
∣∣∣∣∣∣ 1n

n−1∑
j=0

φ(T j
αx) −

∫
φ

∣∣∣∣∣∣ < ε

for every x ∈ Td and for every n ≥ n(ε).
One of the main goals of this work, is to estimate the convergence rate

of the Birkhoff averages for α-Hölder continuous observable φ in the context
of diophantine torus translation. We present this result in the next chapter.

Definition 2.5.2 We say that the linear cocycle A satisfies a fiber large
deviations estimate if for every ε > 0, there exist c(ε) > 0 and n(ε) ∈ N
such that

µ{x ∈ X :
∣∣∣∣ 1n log ∥A(n)(x)∥ − L1(A)

∣∣∣∣ > ε} < e−c(ε)n

for every n ≥ n(ε).

That is, if a linear cocycle A : X → GLm(R) satisfies large deviations
estimates on the fiber, then

L1(A) − ε <
1
n

log ∥A(n)(x)∥ < L1(A) + ε

except for a set of phases with exponentially small probability. When

1
n

log ∥A(n)(x)∥ < L1(A) + ε

holds with high probability, we say that the cocycle satisfies upper large
deviations estimates.

Large deviation estimates were obtained in many contexts, in particular,
in the context of random Bernoulli cocycles [3], quasiperiodic cocycles (see [10,
Chapter 6] therein) and Markov cocycles (see [7] and references therein).

Large deviations estimates for linear cocycles are intimatelly related to
the continuity properties of the Lyapunov exponents. It was shown (see Chap-
ter 3 in [10]) that if a space of cocycles satisfies uniform fiber LDE (uniform
in the sense that the relevant parameters are stable under perturbation of the
data) then the Lyapunov exponents are Hölder continuous functions.

In Chapter 5 we will obtain the Hölder continuity of the Lyapunov
exponeny for Markov operators directly, without large deviations. However, for
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other models of linear cocycles, establish large deviations (which is important
in itself) is also crucial for deriving continuity properties of the Lyapunov
exponents.

2.6
Kifer non-random filtration

Before we formulate the Kifer non-random filtration theorem, we present
the following theorem that will be useful later. We will follow the argument of
Y. Kifer [20].

Theorem 2.6.1 Let (M,K, µ) be a Markov system, where M is a compact
metric space, and F be the space of Borel maps of M into itself. For every
x ∈ M and for every measurable subset E ⊂ M , there exists a probability
measure ν in the space of F such that

Kx(E) = ν{g ∈ F : g(x) ∈ E} .

Proof. Since the space M is a compact metric space, M is Borel measurably
isomorphic to a Borel subset of the unit interval [0, 1] (see [22]). That is, there
exists a one-to-one map φ : M → [0, 1] such that Γ = φ(M) is a Borel subset
of [0, 1] and φ−1 : Γ → M is also Borel.

For any x ∈ M and a Borel subset E of [0, 1], define a probability measure
K̃ on [0, 1] such that

K̃x(E) = Kx(φ−1(E ∩ Γ))

and define the map z : M × [0, 1] → [0, 1] such that

z(x, ω) = inf{γ ∈ [0, 1] : K̃x([0, γ]) ≥ ω}.

Fixed ω and since Kx(G) is a Borel function of x for any Borel subset
G ⊂ M , the subset {x ∈ M : Kx(φ−1([0, a] ∩ Γ)) < ω} is Borel. Then z(·, ω) is
a Borel map from M into [0, 1]. Indeed,

{x ∈ M : z(x, ω) > a} = {x ∈ M : K̃x([0, a]) < ω}

= {x ∈ M : Kx(φ−1([0, a] ∩ Γ)) < ω} .

Let x0 ∈ M and consider the map ψ : [0, 1] → M such that

ψ(x) :=

φ
−1(x), x ∈ Γ

x0, x ∈ [0, 1] \ Γ
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For each ω ∈ [0, 1], we may define the Borel map fω : M → M, fω =
ψ ◦ z(·, ω). Then, we obtain a map J : [0, 1] → F such that J (ω) = fω.
Moreover, there is a measurable structure on F induced by the map J by the
following: a subset A ⊂ J is measurable if J −1A is a Borel subset of [0, 1].

Let m be the Lebesgue measure on [0, 1] and define the probability
measure

ν(A) = m(J 1A)

for any A ⊂ F such that J −1A is a Borel subset of [0, 1]. Fixed x ∈ M , we
have

m{ω : z(x, ω) > a} = m{ω : K̃x([0, a]) < ω}

= 1 − K̃x([0, a]) .

Hence,

1 = m({ω : z(x, ω) ∈ [0, a]} ∪ {ω : z(x, ω) > a})

= m{ω : z(x, ω) ∈ [0, a]} +m{ω : z(x, ω) > a}

= m{ω : z(x, ω) ∈ [0, a]} + 1 − K̃x([0, a])}

and then m{ω : z(x, ω) ∈ [0, a]} = K̃x([0, a]). Moreover, for any Borel subset
∆ of [0, 1], we have

m{ω : z(x, ω) ∈ ∆} = K̃x(∆).

Therefore, for every Borel subset G of M

ν{g ∈ F : g(x) ∈ G} = m(J −1{g ∈ F : g(x) ∈ G})

= m({ω : J (ω) ∈ {g ∈ F : g(x) ∈ G}})

= m{ω : f(ω)x ∈ G}

= m{ω : z(x, ω) ∈ ψ−1G}

= K̃x(ψ−1G)

= K̃x(Γ ∩ ψ−1G)

= K̃x(φG) = Kx(G)

and this completes the proof. ■

Definition 2.6.1 Let (Ω,B,P) be a probability space. A filtration on B is
a sequence of σ-algebras {Bn}n≥0 such that Bn ⊂ Bn+1. A martingale is a
pair ({ξn}n≥0, {Bn}n≥0) where {ξn}n≥0 is a random process on (Ω,B,P) and
{Bn}n≥0 is a filtration on B such that for all n ≥ 0:
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(1) ξn is Bn-measurable,

(2) E[ξn+1 | Bn] = ξn, P-almost everywhere.

Theorem 2.6.2 (Martingale Convergence Theorem [26]) Let (Ω,B,P)
be a probability space and let({ξn}n≥0, {Bn}n≥0) be a martingale. There exists
ξ∞ ∈ L1(X,B,P) such that:

(1) ξn → ξ∞ P-almost everywhere,

(2) E[ξ∞ | Bn] = ξn P-almost surely for every n ≥ 0,

(3) ξ is B∞-measurable, where B∞ = σ(Bn : n ≥ 0).

Let F be the space of all projective linear cocycles. The space F is
endowed with a measurable structure such that the map F ×M×PRd, (F, u) 7→
Fu is measurable with respect to the product measurable structure in F ×M×
PRd.

Let Pd−1 be the (d − 1)-dimensional projective space and let m(x) be a
positive integer-valued Borel function on M . Define Uk = {x : m(x) = k}.

Definition 2.6.2 We say that L is a Borel measurable subbundle of M × Rm

corresponding to the function m(x) if L = ∪x∈M(x,Lx) and the map x 7→ Lx

restricted to each Uk is a Borel map of Uk into the Grassman manifold Grk(Rm).

In other words, if L is a Borel measurable subbundle of M × Rm then,
for every x ∈ Uk, the k-dimensional subspaces Lx depend measurably on x.

Now, we are going to state and present the proof of the Kifer non-random
filtration theorem following the argument in [20].

Theorem 2.6.3 Let F1, F2, . . . be a sequence of random linear cocycle with
the common distribution n acting on M × PRd−1. Assume that n and a P ∗-
invariant ergodic probability measure ρ on M satisfy the condition∫ ∫

(log+ ∥JF (x)∥ + log+ ∥JF −1(x)∥) dρ(x)dn(F ) < ∞ . (2.1)

Then one can choose a Borel set Mρ ⊂ M with ρ(Mρ) = 1 so that for any
x ∈ Mρ there exists a sequence of (non-random) linear subspaces

0 ⊂ Lr(ρ)
x ⊂ · · · ⊂ L1

x ⊂ L0
x = Rm (2.2)

and a sequence of (non-random) values

−∞ < βr(ρ)(ρ) < · · · < β1(ρ) < β0(ρ) < ∞
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such that for p-almost all ω ∈ Ω,

lim
n→∞

1
n

log ∥nJ (x, ω)∥ = β0(ρ)

and if ξ ∈ Li
x \ Li+1

x , where Li
x = 0 for all i > r(ρ), then

lim
n→∞

1
n

log ∥nJ (x, ω)ξ∥ = βi(ρ) p-a.s.

Moreover, the numbers βi(ρ) are the values which the integrals

γ(ν) =
∫ ∫

log ∥JF (x)u∥
∥u∥

dν(x, u) dn(F ) (2.3)

take on for different ergodic measures ν ∈ Nν, where

Nρ = {ν ∈ Prob(M × Pm−1) : ν isn -stationary measure and πν = ρ}

and π : M×Pm−1 → M is the natural projection. Furthermore, the dimensions
of Li

x, i = 1, · · · , r(ρ) do not depend on x for every x ∈ Mρ and Li = {Li
x} form

Borel measurable subbundles of Mρ × Rm. These subbundles are F -invariant
in the sense that

JF Li
x = Li

fx ρ× n -a.s.

where f = πFπ−1.

Proof. First, we establish the following useful lemmas:

Lemma 2.6.1 (Kronecker’s lemma) Given a convergent series ∑∞
n=1 an,

lim sup
n→∞

n∑
j=0

j

n
aj = 0 .

Lemma 2.6.2 Let Zn be a Markov chain on a topological space M and K be
the Markov kernel. If Q is the correspondent Markov operator and g ∈ L∞(Σ),
then with probability one

lim
n→∞

1
n

n−1∑
j=0

[Qg(Zj) − g(Zj)] = 0.

Proof. Define the sequence of random variables

Wn :=
n−1∑
j=0

1
j + 1[Qg(Zj) − g(Zj+1)] .
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Then

Wn+1 =
n∑

j=0

1
j + 1[Qg(Zj) − g(Zj+1)] = Wn + Qg(Zn) − g(Zn+1)

n+ 1 .

We claim that {(Wn,Bn)} is a martingale, where Bn = σ{Z0, . . . , Zn}. In
fact, since Wn is determined by Zj with 0 ≤ j ≤ n, we have

E[Wn+1 | Bn] = Wn + 1
n+ 1(E[Qg(Zn) | Bn] − E[g(Zn+1) | Bn])

= Wn + 1
n+ 1(Qg(Zn) − E[g(Zj+1) | Zn]) .

On the other hand,

E[g(Zj+1) | Zn = x] =
∫
g dKx = Qg(x) = Qg(Zn) .

Hence,
E[Wn+1 | Bn] = Wn

and consequently, the process {(Wn} is a martingale.
By Theorem 2.6.2 (Martingale Convergence Theorem), there exists a

random variable W : X → R such that Wn converges to W almost surely. By
Lemma 2.6.1 (Kronecker’s lemma) we have

0 = lim
n→∞

1
n

n−1∑
j=0

(Qg)(Zj) − g(Zj+1)

= lim
n→∞

1
n


n−1∑
j=0

[(Qg)(Zj) − g(Zj) + (g(Zj) − g(Zj+1))]


= lim

n→∞

1
n

n−1∑
j=0

[(Qg)(Zj) − g(Zj)] + lim
n→∞

1
n

n−1∑
j=0

[g(Zj) − g(Zj+1)]

= lim
n→∞

1
n

n−1∑
j=0

[(Qg)(Zj) − g(Zj)] + lim
n→∞

g(Z0) − g(Zn)
n

Hence,

lim
n→∞

1
n

n−1∑
j=0

[(Qg)(Zj) − g(Zj)] = 0

and this completes the proof. ■

We recall the following result from H. Furstenberg and Y. Kifer [13].

Theorem 2.6.4 (Furstenberg-Kifer) Let (Σ, K) be a Markov system on a
compact metric space Σ. Given a K-Markov process {Zn}n≥0 and f ∈ C(Σ),
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then with probability one,

lim sup
n→∞

1
n

n−1∑
j=0

f(Zj) ≤ sup
{∫

Σ
f dν : ν ∈ ProbK(Σ)

}
.

Proof. Consider a dense sequence of functions g1, g2, . . . in C(Σ) and the
sequence of measures

µn(ω) := 1
n

∞∑
j=0

δZj(ω).

For each i ≥ 1, let Bi ∈ B be the full probability set in Lemma 2.6.2
associated with gi. Then B = ∩∞

i=1Bi ∈ B is a full probability set such that for
each ω ∈ B and all i ≥ 1,

lim
n→∞

1
n

n−1∑
j=0

(Qgj)(Zj(ω)) − gj(Zj(ω)) = 0 .

This implies that if ν ∈ Prob(Σ) is any accumulation point of µn then
for all j ≥ 1, ∫

(Qgj − gj) dν = 0.

On the other hand, the sequence g1, g2, . . . is dense, then for all g ∈ C(Σ),
∫
g d(Q ∗ ν) =

∫
(Qg) dν =

∫
g dν

which proves that ν is a K-stationary probability measure on Σ.
Let

β := sup
{∫

f dν : ν ∈ ProbK(Σ)
}
.

Fix ω ∈ B and choose a sequence of integers ni such that
1
ni

∑n−1
j=0 f(Zj(ω)) converges to the lim sup. Consider a subsequence of this se-

quence such that the corresponding sequence of measures µni
(ω) converges to

ν ∈ Prob(Σ) in the weak-* topology. Hence, ν ∈ Probk(Σ) and

lim sup
n→∞

1
n

n−1∑
j=0

f(Zj) = lim
i→∞

1
ni

ni−1∑
j=0

f(Zj) =
∫
f dν ≤ β

and this completes the proof. ■

Applying Theorem 2.6.4 to f and −f one obtains

Corollary 2.6.5 Let (Σ, K) be a Markov system on a compact metric space
Σ, {Zn}n≥0 be a K-Markov process, f ∈ C(Σ) and assume that

∫
Σ f dν = β for

every K-stationary probability measure ν ∈ ProbK(Σ). Then, with probability
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one
lim 1

n

n−1∑
j=0

f(Zj) = β.

Define on M × Pm−1 × F the following continuous function:

ψ(x, û, F ) := log ∥JF (x)u∥
∥u∥

where u ∈ Rm is a non-zero vector on the line corresponding to û ∈ Pm−1.
Sometimes, we will write w = (x, u) ∈ M × Pm−1.

Furthemore, it is easy to check that

1
n+ 1

n∑
j=0

ψ(J j
F (w), Fj+1) = 1

n
log

∥∥∥∥∥JFn+1(fn(x)) · · · JF1(x) u

∥u∥

∥∥∥∥∥ (2.4)

for every w = (x, u) ∈ M × Pm−1. Define ψ̃ : M × Pm−1 × FN → R such that

ψ̃(w, ω) = ψ(w,F1(ω))

the natural extension of ψ and define the skew product transformation

T (w, ω) = (F1(ω)w, σω)

acting on M × Pm−1 × FN. Then

ψ(J j
F (w), Fj+1(ω)) = ψ̃ ◦ T k(w, ω) . (2.5)

Assume that ν ∈ Prob(M × Pm−1) is an ergodic n-stationary measure.
Since ∫

sup
u∈Pm−1

|ψ(x, u, F ) dρ(x) dn(F )| < ∞

and from (2.4) and (2.5), for ν-almost every w = (x, u)

lim
n→∞

1
n+ 1 log

∥∥∥∥∥JFn+1(fn(x)) · · · JF1(x) u

∥u∥

∥∥∥∥∥ = γ(ν) (2.6)

where γ(ν) is defined by (2.3), that is,

γ(ν) =
∫ ∫

log ∥JF (x)u∥
∥u∥

dν(x, u) dn(F ) .

Moreover, if πν = ρ ∈ Prob(M), then (2.6) implies that for ρ-almost
every x ∈ M

lim inf
n→∞

1
n+ 1 log

∥∥∥∥∥JFn+1(fn(x)) · · · JF1(x) u

∥u∥

∥∥∥∥∥ ≥ γ(ν), p -a.s.

DBD
PUC-Rio - Certificação Digital Nº 1821096/CA



Chapter 2. General concepts 31

But then also

lim inf
n→∞

1
n+ 1 log

∥∥∥∥∥JFn+1(fn(x)) · · · JF1(x) u

∥u∥

∥∥∥∥∥ ≥ sup
ν∈Nρ

γ(ν), ρ× p -a.s. (2.7)

where Nρ = {ν ∈ Prob(M × Pm−1) : ν isn -stationary measure andπν = ρ}.
Now, we are going to show that, in fact, the limit in (2.7) exists and it

is equal to supν∈Nρ
γ(ν).

Lemma 2.6.3 Let ρ ∈ Prob(M) be an ergodic invariant measure satisfying
∫ ∫

(log+ ∥JF (x)∥ + log+ ∥JF −1(x)∥) dρ(x)dn(F ) < ∞ .

Then, there exists a Borel set Up ⊂ M with ρ(Uρ) = 1 such that p-almost surely

lim
n→∞

1
n

log
∥∥∥JFn+1(fn(x)) · · · JF1(x)

∥∥∥ = sup
ν∈Nρ

γ(ν) = β0(ρ)

for every x ∈ Uρ. Furthermore, if the linear functional γ is constant for all
n-stationary measures ν ∈ Nρ, that is, γ(ν) = β, then

lim
n→∞

1
n

log
∥∥∥JFn+1(fn(x)) · · · JF1(x)ξ

∥∥∥ = β p -a.s.

for any nonzero ξ ∈ Rm and for every x ∈ Uρ.

Proof. Define ψN : M × Pm−1 × FN → R and ΨN : M × Pm−1 → R such that

ψN = max{−N,min{N,ψ}} and ΨN =
∫
ψN dn.

By a similar argument used in Lemma 2.6.2, we can prove that for ν×p-
almost surely

lim
n→∞

1
n+ 1

n∑
k=0

(ψN(J j
F (w), Fk+1) − ΨN(J j

F (w))) = 0 . (2.8)

Consider the Markov chain Yn = F nY0 on the space M × Pm−1. Then,
applying Theorem 2.6.4, for ρ-almost all initial points X0 = πY0,

lim sup
n→∞

1
n+ 1

∑
k=0

ΨN(Yk) ≤ sup
ν∈Nρ

∫
ΨN dν p -a.s.

In other words, for ρ-almost all x ∈ M and all u ∈ Pm−1,

lim sup
n→∞

1
n+ 1

∑
k=0

ΨN(F k(x, u)) ≤ sup
ν∈Nρ

∫ ∫
ψN(w,F ) dν(w) dn(F ) p -a.s.

It follows that
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|ψ(x, u, F ) − ψN(x, u, F )| ≤ (log+ ∥JF (x)∥ + log+ ∥J −1
F (x)∥ +N)1BN

(x, F )
(2.9)

where
BN = {(x, F ) : max{log+ ∥JF (x)∥, log+ ∥J −1

F (x)} > N} .

Hence, for w = (x, u)

∣∣∣∣∣ 1
n+ 1

n∑
k=0

[ψ(F kw,Fk+1) − ψN(F kw,Fk+1)]
∣∣∣∣∣ ≤

≤ 1
n+ 1

n∑
k=0

[log+ ∥JFk+1(fkx)∥ + log+ ∥J −1
Fk+1

(fkx)∥ +N ]1BN
(fkx, Fk+1)] .

(2.10)

Applying the random ergodic theorem, we conclude that (2.10) converges
ρ× p-almost surely to the limit∫

BN

(log+ ∥JF (x)∥ + log+ ∥J −1
F (x)∥) dρ(x) dn(F ) . (2.11)

By hypothesis (2.1), the expression in (2.11) tends to zero when N → ∞.
This together with (2.4), (2.8), (2.9), (2.10) and (2.11) implies that for ρ-almost
all x and u ∈ Pm−1,

lim sup
n→∞

1
n

log
∥∥∥JFn+1(fn(x)) · · · JF1(x)û

∥∥∥ ≤ sup
ν∈Nρ

γ(ν) p -a.s. (2.12)

Let {xi} be a orthonormal basis of Rm. Since the inequality (2.12) holds
p-almost surely for any ξj in place of û then it follows that ρ× p-almost surely

lim sup
n→∞

1
n

log
∥∥∥JFn+1(fn(x)) · · · JF1(x)

∥∥∥ ≤ sup
ν∈Nρ

γ(ν) . (2.13)

Combining (2.7) and (2.13) together with Corollary 2.6.5, we may
conclude the proof. ■

For any set of non-zero vectors Γ in Rm, denote by Γ̂ the corresponding
set of points in Pm−1. For any measure ν ∈ Prob(Pm−1) denote by L(ν) the
minimal linear subspace L of Rm satisfying ν(L̂) = 1.

It is straightforward to show that L(ν) = ∪{(x,Lx(ν))} forms a Borel
measurable subbundles of M × Rm.

Lemma 2.6.4 Let ρ ∈ Prob(M) be an ergodic n-stationary probability mea-
sure and ν ∈ Nρ. Then there exists a measurable set V (ν) ⊂ M such that
ν(V (ν)) = 1 and

Lf(x)(ν) = JF (x) Lx(ν)
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for n-almost all F and for every x ∈ V (ν), where f = πFπ−1. Moreover, the
dimension nx(ν) of Lx(ν) is an invariant function and it is equal to a constant
for ρ-almost every x.

Proof. Define L̂(ν) = ∪x(x, L̂x(ν)). Since ρ is an n-stationary and by definition
of L,

1 = ν(L̂(ν)) =
∫ ∫

νx(J −1
F (x)L̂fx(ν)) dρ(x) dn(F ) .

Hence,
νx(J −1

F (x)L̂fx(ν)) = 1 ρ× n -a.e. (x, F ).

Then, we can choose a Borel set V (ν) with ρ(V (ν)) = 1 such that the
previsous equality holds for any x ∈ V (ν) and n-almost every F . By the
minimality of Lx(ν) we conclude that for every x ∈ V (ν),

Lx(ν) ⊂ J −1
F Lfx(ν) n -a.s.

Hence, the dimension nx(ν) of Lx(ν) satisfies

nx(ν) ≤ nfx(ν) n -a.s.

Since
Pnx(ν) =

∫
nfx(ν) dn(F )

and ρ is n-stationary then from the previous inequality

0 ≤
∫

(nfx(ν) − nx(ν)) dn(F ) dρ(x) =
∫

(Px(ν) − nx(ν)) dρ(x) = 0

and then nfx(ν) = nx(ν) for ρ× n-almost surely.
Then

Pnfx(ν) = nx(ν) ρ -a.s.

and since ρ is ergodic, we conclude that nx(ν) is a constant for ρ-almost every
x. And this conclude the proof. ■

Recall that a measurable subbundle L = ∪x(x,Lx) is F -invariant ρ× n-
almost surely if

JF Lx = Lfx ρ× n -a.s. (2.14)
where f = πFπ−1. If ρ is an ergodic n-stationary probability measure and
L = ∪x(x,Lx) is F -invariant ρ× n-almost surely then the dimension

dx(L) = dim Lx = d(ρ,L) = const ρ -a.s.

Then, the subbundle L restricted to some Borel set U(L) ⊂ M with ρ(U(L)) =
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1 is measurably isomorphic to the direct product U(L) ×Rd(ρ,L). This isomor-
phism can be represented by some family of linear maps JL(x) : Lx → Rd(ρ,L)

defined for x ∈ U(L) and such that (x, ξ) ∈ L corresponds to (x, JL(x)ξ) ∈
U(L) × Rd(ρ,L).

For each random linear cocycle F , define the map FL : M × Rd(ρ,L) →
M × Rd(ρ,L) such that FL(x, η) = (fx,J L

F (x)η) where x ∈ U(L), f = πFπ−1

and

 JL(x)JF (x) = J L
F (x)JL(x), if (x, F ) satisfies (2.14)

J L
F (x) = Id, if (x, F ) does not satisfies (2.14)

A similar argument used in the proof of the Lemma 2.6.3, we may proof
that there exists β(ρ,L) such that with probability one

lim
n→∞

1
n

log
∥∥∥J L

Fn
(fn−1x) · · · J L

F1(x)
∥∥∥ = β(ρ,L)

for every x ∈ U(L).
Let ν ∈ Nρ and ρ ∈ Prob(M) are both ergodic measures. By Lemma

2.6.4, the subbundle L(ν) is measurable and F -invariant ρ × n-a.s. Since
ν(L(ν)) = 1, it follows that

β(ρ,L(ν)) = α(ν).

Denote by C the collection of all F -invariant ρ × p-a.s. measurable
subbundles L satisfying β(ρ,L) < β0(ρ), where

β0(ρ) = sup
ν∈Nρ

γ(ν) = sup
ν∈Nρ

∫ ∫
log ∥JF (x)u∥

∥u∥
dν(x, u) dn(F ) .

If C = ∅ then the filtration is trivial. Suppose now that C is not empty
then there exists ν ∈ Nρ with L(ν) ∈ C. Since d(ρ,L) ≤ m then C has a
maximal element Lmax which is uniquely determined. Moreover,

β1(ρ) = β(ρ,Lmax) = sup
L∈C

β(ρ,L) < β0(ρ). (2.15)

We claim that Lmax can be taken as L1 in (2.2). In fact, suppose that
L is an F -invariant ρ × n-a.s. measurable subbundle. Consider the factor
(M×Pm−1)/L where each two points (x, ξ) and (x, χ) inM×Pm−1 are identified
if ξ − χ ∈ Lx. Moreover, since L is F -invarian n× ρ-a.s., we have

JF (x)Rm/Lx = Rm/Lfx ρ× n -a.s.
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Given x ∈ U(L), we can apply similar arguments of the previous lemmas
to obtain that ρ× p-a.s. the limit

lim
n→∞

1
n

log
∥∥∥J L

Fn
(fn−1x) · · · J L

F1(x)
∥∥∥ = β(ρ, (M × Pm−1)/L)

exists and it is non-random.

Lemma 2.6.5 Let L be an F -invariant µ× ρ-a.s. measurable subbundle then

β0(ρ) = max{β(ρ,L), β(ρ, (M × Rm)/L)} .

Proof. Let U(L) be a measurable subset of M such that ρ(U(L)) = 1, for any
x ∈ U(L) such that

JF Lx = Lfx ρ× n -a.s.

and dx(L) = d(ρ,L). For those x and n-almost all F , the matrices JF (x) have
the following form

JF (x) =
 J 11

F (x) J 12
F (x)

0 J 22
F (x)


where J ij

F (x) are submatrices, J 11
F (x) corresponds to the restriction of JF (x)

to Lx and J 22
F (x) corresponds to the action of JF (x) on Rm/Lx.

A simple calculation gives

JF (x)n(x) =
 (J 11

F )n(x) Cn(x)
0 (J 22

F )n(x)


where

Cn(x) :=
n−1∑
j=0

(J 11
F )n−i−1(T ix)(J 12

F )(T ix)(J 22
F )i(x).

Since max{∥(J 11
F )n∥, ∥(J 22

F )n∥} ≤ ∥JF (x)n∥ we have

max
{

lim sup 1
n

log ∥(J 11
F )n∥,

lim sup 1
n

log ∥(J 22
F )n∥

}
≤ lim sup 1

n
log ∥(JF (x))n∥

which implies that

max{β(ρ,L), β(ρ, (M × Rm)/L)} ≤ β0(ρ).

On the other hand, since J 12
F is bounded, the above formula shows that

∥(JF (x))n∥ can never grow exponentially faster than both ∥(J 11
F )n∥ and
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∥(J 22
F )n∥. Thus,

lim sup 1
n

log ∥(JF (x))n∥ ≤

≤ max
{

lim sup 1
n

log ∥(J 11
F )n∥, lim sup 1

n
log ∥(J 22

F )n∥
}

and then
β0(ρ) ≤ max{β(ρ,L), β(ρ, (M × Rm)/L)} .

■

By (2.15), β(ρ,Lmax) < β0(ρ), then by Lemma 2.6.5, β(ρ, (M×Rm)/L) =
β0(ρ). Applying a similar argument of Lemma 2.6.3 to the vector bundle
(M × Rm)/Lmax, we conclude that either

lim
n→∞

1
n

log
∥∥∥JFn(fn−1x) · · · JF2(fx)JF1(x)ξ

∥∥∥ = β1(ρ) ρ× p -a.s.

for every ξ ∈ Rm/Lmax
x or by Lemma 2.6.4, there exists an F -invariant

ρ × n-almost surelly non-trivial measurable subbundle A of (M × Rm)/Lmax

with β(ρ,A) < β0(ρ). Hence,there exists an F -invariant ρ × n-almost surelly
measurable subbundle L̃ of M × Rm such that L̃ > Lmax and d(ρ, L̃) >

d(ρ,Lmax). This contradicts the maximality of Lmax and proves that

lim
n→∞

1
n

log
∥∥∥JFn(fn−1x) · · · JF2(fx)JF1(x)ξ

∥∥∥ = β1(ρ) ρ× p -a.s.

for every ξ ∈ Rm/Lmax
x .

Then, take L1 = Lmax. To get the next term in the filtration, we repeat
above arguments for L1 instead of M ×Rm. And the proof finish by induction.
■
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3
Uniform convergence rate for Birkhoff sums of torus transla-
tions

In this chapter we establish effective convergence rates for the Birkhoff
average of toral translations. These and other related results were published
in Klein, Liu and Melo [21].

In Section 3.1 we provide the framework for our results and state them
formally. In Section 3.2 we review some basic concepts about continued
fractions while in Section 3.3 we review some Fourier analysis notions. Finally,
we obtain estimates on the uniform convergence rate of the Birkhoff averages
of a continuous observable over one-dimensional torus translations (Section
3.4) and higher dimensional torus translations (Section 3.5).

3.1
Introduction and statements

Let us recall the Birkhoff’s ergodic theorem for uniquely ergodic systems.

Theorem 3.1.1 Let (X,B, µ, T ) be a uniquely ergodic system and let f : X →
R be a continuous function. Then, the convergence of the Birkhoff averages

lim 1
n

n−1∑
j=0

f(T jx) =
∫

X
fdµ

is uniform on X.

In other words, for a uniquely ergodic system and a continuous observ-
able, the corresponding Birkhoff averages converge everywhere and uniformly.

A natural question is then: can we estimate the convergence rate of
the Birkhoff averages for certain types of uniquely ergodic systems and
observables?

We obtain a positive answer to this question in the case of a Diophantine
d-dimensional torus translation with a Hölder continuous observable. We
obtained similar results also for affine skew product toral transformations (see
[21]). We do not include them here since they are not very relevant to the rest
of this work.
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Let X be a metric space. We say that a map ϕ : X → R is α-Hölder
continuous if there exist non-negative real constants C and α ∈ (0, 1] such
that

|ϕ(x) − ϕ(y)| ≤ Cd(x, y)α for all x, y ∈ X.

We denote by Cα(X) the Banach space of α-Hölder continuous functions on
X, endowed with the usual Hölder norm

∥ϕ∥α := ∥ϕ∥∞ + sup
x ̸=y

|ϕ(x) − ϕ(y)|
d(x, y)α

.

Let T = R/Z be the one dimensional torus endowed with the Lebesgue
measure and let T : T → T, Tx = x+ω be the translation on T by an irrational
frequency ω, which satisfies a Diophantine condition.

Definition 3.1.1 We say that a frequency ω ∈ T satisfies a (strong) Dio-
phantine condition if there exists γ > 0 such that for all k ∈ Z \ {0} we have

∥kω∥ ≥ γ

|k| log2 (|k| + 1)
. (3.1)

Denote by DC(T)γ the set of all frequencies ω ∈ T satisfying (3.1). Since
the series ∑k≥1

1
k log2(k+1) converges, by Khinchin’s theorem (see Theorem 4

in [23, Chapter II]), the set of frequencies satisfying (3.1) for some γ > 0 has
full measure.

Let ϕ : X → R be a continuous observable and for every integer N let

ϕ(N) (x) := ϕ(x) + ϕ(x+ ω) + . . .+ ϕ(x+ (N − 1)ω)

denote the corresponding N -th Birkhoff sum.
We estimate the convergence rate of the Birkhoff averages for a Diophan-

tine torus translation with a Hölder continuous observable. More precisely, we
obtain the follow result.

Theorem 3.1.2 Assume that the observable ϕ is an α-Hölder continuous
function on T and that the frequency ω ∈ T satisfies the Diophantine con-
dition (3.1). Then for all integers N we have

∥∥∥∥ 1
N
ϕ(N) −

∫
T
ϕ
∥∥∥∥

∞
≤ const

(
1
γ

log 1
γ

)
∥ϕ∥α

log3α N

Nα
.

Here and through the chapter const will refer to a universal constant
(that could be made explicit) that may change from a line to another.

It turns out that this estimate is essentially optimal, in the sense that
for almost every Diophantine frequency there exists an observable ϕ ∈ Cα(T)
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and a subsequence {nk}k≥1 such that the corresponding Birkhoff averages of
ϕ over the transformation Tω satisfy

∣∣∣∣ 1
nk

ϕ(nk)(0) −
∫
T
ϕ
∣∣∣∣ ≥ const 1

nα
k

for all k ≥ 1.

We are not providing the proof of this optimality here, as it is not
directly relevant to the rest of this work. The interested reader may consult
our paper [21, Theorem 2].

The above Theorem is an extension of Denjoy-Koksma’s inequality
proven by M. Herman in [17, Chapter VI.3]. In Section 3.4 we present a
new proof of this result. Our approach uses Fourier analysis tools (effective
approximation by trigonometric polynomials along with an effective rate of
decay of the Fourier coefficients of continuous functions) and estimates of (in
this case, some simple) exponential sums. The interested reader may compare
our approach with the more direct, elementary argument employed by M.
Herman in [17, Chapter VI.3].

While indeed more technical, our argument is versatile and modular, thus
we also obtain a result for higher dimensional torus translations, although not
as optimal one as in the one dimensional setting.

For a multi-index k = (k1, . . . , kd) ∈ Zd, let |k| := max1≤j≤d |kj|, and if
x = (x1, . . . , xd) ∈ Td, let k · x := k1x1 + . . .+ kdxd.

Definition 3.1.2 We say that ω ∈ Td satisfies a Diophantine condition if
there exist γ > 0 and A > d such that

∥k · ω∥ = dist (k · ω, Z) ≥ γ

|k|A
(3.2)

for all k ∈ Zd with |k| ≠ 0. Denote by DC(Td)γ,A the set of all frequency
vectors ω satisfying the Diophantine condition (3.2). Given any A > d, the set⋃

γ>0 DC(Td)γ,A has full measure.

Next we formulate our result on the rate of convergence of Birkhoff means
of Hölder observables over a higher dimensional toral translation.

Theorem 3.1.3 Let ϕ ∈ Cα(Td), let ω ∈ DC(Td)γ,A and let Tω : Td → Td be
the corresponding torus translation. Then for all N ≥ 1 we have

∥∥∥∥ 1
N
ϕ(N) −

∫
Td
ϕ
∥∥∥∥

∞
≤ const

γ
∥ϕ∥α

1
Nβ

where β = α
A+d

.
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3.2
Some arithmetic considerations

We begin with a review of some basic arithmetic properties that will be
used latter. For more detais, good references are [30, Chapter 3] and [23].

Let ω ∈ T ≃ [0, 1), consider its continued fraction expansion

ω = [a0, . . . , an, . . .] = a0 + 1
a1 + 1

a2+···

and for each n ≥ 1, the corresponding n-th (principal) convergent

pn

qn

= [a0, . . . , an],

where the integers pn = pn(ω), qn = qn(ω) are relatively prime.
It is easy to verify the following recursion formulas.

Theorem 3.2.1 For n ≥ 2, we have that

pn+2 = an+2pn+1 + pn,

qn+2 = an+2qn+1 + qn.

The following proposition ensures that the sequence {qn}n≥1 of denom-
inators of the convergents of ω is strictly increasing (for its proof, see [23,
Corollary 2]).

Proposition 3.2.2 If a1, a2, . . . are positive integers, then pn and qn are
relatively primes, and the denominators 0 < q1 < q2 < . . . form a strictly
increasing sequence of integers.

By Theorem 3.2.1 and Proposition 3.2.2, qn+2 = an+1qn+1 + qn ≥ 2qn, so
qn+2k ≥ 2kqn for all integers n, k.

Theorem 3.2.3 For even n, the n-th principal convergents of ω form a strictly
increasing sequence converging to ω. On the other hand, for odd n, the n-th
principal convergents of ω form a strictly decreasing sequence converging to ω.
Furthermore, the following inequalities hold:

1
2qn+1

<
1

qn+1 + qn

< |qnω − pn| < 1
qn+1

. (3.3)

We denote by ∥ω∥ the distance between ω and the nearest integer. Then
∥qnω∥ = |qnω − pn|.
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Definition 3.2.4 We say that a fraction p
q
, (q > 0), is a best approximation

to ω if
∥qω∥ = |qω − p| and ∥q′ω∥ > ∥qω∥

for every 1 ≤ q′ < q.

It turns out that the best approximations to ω are precisely its principal
convergents. In fact, qn+1 is the smallest integer j > qn such that ∥jω∥ < ∥qnω∥
(see [23, Chapter 1, Theorem 6]). Noting also that ∥−t∥ = ∥t∥, we conclude
the following.

Proposition 3.2.5 Given ω ∈ (0, 1) \ Q, if p
q

is a best approximation to ω

then
∥jω∥ > 1

2q for all 1 ≤ |j| < q . (3.4)

Proof. Suppose that q = qn. By inequality (3.3),

1
2qn

< |qn−1α− pn−1| = ∥qn−1ω∥.

Since |j| < qn and the best approximations to ω are its principal convergents,
we have that ∥qn−1ω∥ < ∥jω∥. ■

If ω ∈ DC(T)γ, since by (3.3) we have ∥qnω∥ = |qnω − pn| < 1
qn+1

, it
follows that

qn+1 ≤ 1
γ
qn log2(qn + 1) for all n ≥ 1. (3.5)

3.3
Effective approximation by trigonometric polynomials

In this section we review some Fourier analysis notions on the additive
group Td, d ≥ 1. We start our review in the case d = 1 (see [32] or [19] for
more details).

Given a continuous observable ϕ : T → R, consider the Fourier series
associated with ϕ

ϕ(x) ∼
∞∑

k=−∞
ϕ̂(k) e(kx) =

∫
T
ϕ+

∑
k ̸=0

ϕ̂(k) e(kx) ,

where e(x) := e2πix and

ϕ̂(k) =
∫ 1

0
ϕ(x)e(−kx)dx

is the k-th Fourier coefficient of ϕ.
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For every n ≥ 0, denote by

Snϕ(x) :=
∑

|k|≤n

ϕ̂(k) e(kx)

the n-th partial sum of the Fourier series of ϕ

Proposition 3.3.1 If ϕ ∈ Cα(T), then the Fourier coefficients of ϕ have the
decay ∣∣∣ϕ̂(k)

∣∣∣ ≤ const ∥ϕ∥α

1
|k|α

for all k ̸= 0.

Proof. Note that

ϕ̂(k) = 1
2π

∫ 2π

0
ϕ(x)e−ikxe−iπdx = − 1

2π

∫ 2π

0
ϕ(x)e−ik(x+ π

k )dx .

Then, by a change of variables,

2ϕ̂(k) = − 1
2π

∫ 2π

0
ϕ(x)e−ik(x+ π

k )dx+ 1
2π

∫ 2π

0
ϕ(x)e−ikxdx

= 1
2π

∫ 2π

0

[
ϕ
(
x+ π

k

)
− ϕ(x)

]
e−ik(x+ π

k )dx

= 1
2π

∫ 2π

0

[
ϕ
(
x+ π

k

)
− ϕ(x)

]
e−ikxe−iπdx

= − 1
2π

∫ 2π

0

[
ϕ
(
x+ π

k

)
− ϕ(x)

]
e−ikxdx

Since ϕ is a α-Hölder continuous map,

|ϕ̂(k)| ≤ C
πα

|k|α
= O

(
1

|k|α

)
.

■

Definition 3.3.1 (Convolution) A typical construction of good trigonomet-
ric approximations uses integral operators of convolution type:

φ ∗Kn(x) :=
∫
T
φ(x− t)Kn(t)dt =

∫
T2
φ(t)Kn(x− t)dt,

where Kn is a trigonometric polynomial of degree n.

Since Kn is a trigonometric polynomial of degree n, the convolution
φ ∗Kn(x) is a trigonometric polynomial of degree ≤ n.

Lemma 3.3.1 Let Kn : T → R be a trigonometric polynomial of degree n that
satisfies the following conditions for some constant L < ∞:
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1)
∫
T
Kn(t)dt = 1,

2) Kn(t) = Kn(−t),

3)
∫ π

0
|Kn(t)| dt1 ≤ L,

4)
∫ π

0
nt|Kn(t)| dt1 ≤ L.

Let φ : T → R be an α-Hölder continuous function. Then there is M < ∞ such
that

∥φ ∗Kn − φ∥∞ ≤ M · 1
|n|α

.

Proof. By (1)-(3)

|φ∗Kn(x) − φ(x)| =
∣∣∣∣∫

T
[φ(x− t) − φ(x)]Kn(t) dt

∣∣∣∣
= 2

∣∣∣∣∫ π

0
[φ(x− t) − φ(x)]Kn(t) dt

∣∣∣∣
= 2

∣∣∣∣∫ π

0
[φ(x+ t) − φ(x)]Kn(−t) dt+

∫ π

0
[φ(x− t) − φ(x)]Kn(t) dt

∣∣∣∣
= 2

∣∣∣∣∫ π

0
[φ(x− t) − 2φ(x) + φ(x+ t)]Kn(t) dt

∣∣∣∣
≤
∫ π

0
2C|t|α|Kn(t)| dt

=
∫ π

0
2C

∣∣∣∣ntn
∣∣∣∣α |Kn(t)| dt

≤ 2C
∣∣∣∣ 1n
∣∣∣∣α ∫ π

0
(nt+ 1)|Kn(t)| dt

≤ M |n|−α

where M = 2C(L+ 1).
Therefore,

∥φ ∗Kn − φ∥∞ ≤ M
1

|n|α
.

■

A family of functions {Kn : T → R} that satisfies the conditions (1)-(4)
in Lemma 3.3.1 is sometimes called a good kernel.

Let
Fn(x) =

∑
|k|≤n

(
1 − |k|

n

)
e(kx) = 1

n

sin2(nx/2)
sin2(x/2)

be the n-th Fejér kernel.
For all n ∈ N, let Jn : T → R be n-th Jackson kernel, that is,

Jn(x) := cn F
2
m(x)
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where m = ⌊n
2 ⌋, Fm(x) is the Fejér kernel and cn ≍ 1

n
is a normalizing factor

chosen so that
∫
T
Jn = 1. Therefore, Jn(x) is a trigonometric polynomial of

degree ≤ n and uniformly in n and k, its (Fourier) coefficients have the bound∣∣∣Ĵn(k)
∣∣∣ ≲ 11.
It turns out that the Jackson kernel Jn(x) satisfies the hypotheses of

Lemma 3.3.1. Hence, an important consequence that will be crucial in our
proof is the following.

Theorem 3.3.2 (Jackson) Given ϕ ∈ Cα(T) with α ∈ (0, 1], if we denote

ϕn(x) := (ϕ ∗ Jn)(x) ,

then ϕn is a trigonometric polynomial of degree ≤ n and

∥ϕ− ϕn∥∞ ≤ const ∥ϕ∥α

1
nα

. (3.6)

This is a quantitative version of the Weierstrass approximation theorem.
Thus α-Hölder continuous functions can be approximated by trigonometric
polynomials of degree ≤ n with error bound of order 1

nα , which is optimal (this
result is called Jackson’s theorem, see [19] or [31]).

As in dimension one, now we will review some Fourier analysis notions
on the additive group Td, d ≥ 2 (see [19, Chapter 1.9] and [16, Chapter 3] for
more details).

For every multi-index k ∈ Zd, define the multiplicative characters
ek : Td → C by ek(x) := e(k · x), where k · x = k1x1 + . . .+ kdxd.

Let ϕ ∈ L2(Td) and let k ∈ Zd be a multi-index. The corresponding
Fourier coefficient of ϕ is then

ϕ̂(k) =
∫
Td
ϕ(x)ek(x) dx =

∫
Td
ϕ(x)e(−k · x) dx .

Moreover, the Fourier coefficients of a function ϕ ∈ Cα(Td) have the
decay ∣∣∣ϕ̂(k)

∣∣∣ ≤ const ∥ϕ∥α

1
|k|α

for all k ∈ Zd, |k| ≠ 0 . (3.7)

This follows from Fubini’s theorem and the corresponding one variable esti-
mate.

Consider the Fourier series expansion of ϕ ∈ L2(Td):

∑
k∈Zd

ϕ̂(k) ek(x) =
∫
Td
ϕ+

∑
|k|̸=0

ϕ̂(k) ek(x) .

1For two varying quantities a and b, a ≲ b will mean that a ≤ const b, where const is a
universal constant.
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Given n ≥ 0, the n-th (square) partial sum of the Fourier series of ϕ is

Snϕ(x) :=
∑

|k|≤n

ϕ̂(k) ek(x) ,

which, as in the one variable case, may in general fail to converge (even
pointwise) to ϕ.

We define the d-dimensional (square) Jackson kernel Jn : Td → R as

Jn(x1, . . . , xd) := Jn(x1) · . . . · Jn(xd) . (3.8)

Then (essentially by Fubini’s theorem) Jn has similar properties to those
of its one dimensional counterpart. More precisely,

∣∣∣Ĵn(k)
∣∣∣ ≲ 1 uniformly in n

and k. Moreover, ϕn := ϕ ∗ Jn is a trigonometric polynomial in d variables of
degree ≤ n and if ϕ ∈ Cα(Td), then for all n ≥ 1,

∥ϕn − ϕ∥∞ ≤ const ∥ϕ∥α

1
nα

. (3.9)

Furthermore, we have the following estimate on the (Fourier) coefficients
of ϕn. If k ∈ Zd with 0 < |k| ≤ n then∣∣∣ϕ̂n(k)

∣∣∣ =
∣∣∣ϕ̂ ∗ Jn(k)

∣∣∣ =
∣∣∣ϕ̂(k)

∣∣∣ ∣∣∣Ĵn(k)
∣∣∣ ≤ const ∥ϕ∥α

1
|k|α

, (3.10)

where the last inequality follows from (3.7) and the fact that
∣∣∣Ĵn(k)

∣∣∣ ≲ 1.

3.4
The one dimensional torus translation case

In this section, we establish Theorem 3.1.2 on the convergence rate for
the Birkhoff averages of a Diophantine one-dimensional torus translations for
Hölder observables.

Let T = R/Z be the one dimensional torus endowed with the Lebesgue
measure and let T : T → T, Tx = x+ω be the translation on T by an irrational
frequency ω, which satisfies a generic Diophantine condition (3.1).

Let ϕ : X → R be a continuous observable and for every integer N let

ϕ(N) (x) := ϕ(x) + ϕ(x+ ω) + . . .+ ϕ(x+ (N − 1)ω)

denote the corresponding Birkhoff sum.
Consider the Fourier series associated with the observable ϕ:

ϕ(x) ∼
∞∑

k=−∞
ϕ̂(k) e(kx) =

∫
T
ϕ+

∑
k ̸=0

ϕ̂(k) e(kx) .
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Then for all j ∈ Z, the Fourier series of ϕ(x+ jω) −
∫
T
ϕ is

∑
k ̸=0

ϕ̂(k) e(k(x+ jω)) =
∑
k ̸=0

ϕ̂(k) e(jkω) e(kx) .

Hence,

1
N
ϕ(N) (x) −

∫
T
ϕ = 1

N

[
ϕ(x) + ϕ(x+ ω) + . . .+ ϕ(x+ (N − 1)ω) −N

∫
T
ϕ
]

= 1
N

N−1∑
j=0

∑
k ̸=0

ϕ̂(k) e(jkω) e(kx)

=
∑
k ̸=0

ϕ̂(k)
 1
N

N−1∑
j=0

e(jkω)
 e(kx) .

It follows that the Fourier series of 1
N
ϕ(N) (x) −

∫
T
ϕ is

∑
k ̸=0

ϕ̂(k)
 1
N

N−1∑
j=0

e(jkω)
 e(kx) =

∑
k ̸=0

ϕ̂(k)EN(kω) e(kx) , (3.11)

where EN refers to the (averaged) exponential sum

EN(t) := 1
N

N−1∑
j=0

e(jt).

Clearly |EN(t)| ≤ 1. Moreover, since EN(t) is the sum of a finite geometric
sequence, it follows that

|EN(t)| = 1
N

∣∣∣∣∣e(t)N − 1
e(t) − 1

∣∣∣∣∣ = 1
N

∣∣∣∣∣1 − e(Nt)
1 − e(t)

∣∣∣∣∣ ≲ 1
N ∥t∥

. (3.12)

Lemma 3.4.1 Let p
q

be a best approximation to the irrational number ω. Then

∑
1≤|k|<q

|EN(kω)| ≤ const q log q
N

.

Proof. Since ∥t∥ = ∥−t∥ for all t ∈ R, it is enough to bound ∑1≤k<q |EN(kω)|.
Recall that by (3.4), for all 1 ≤ |j| < q,

∥jω∥ > 1
2q .

Thus for every k, k′ ∈ {1, . . . , q − 1} with k ̸= k′ we have

∥kω − k′ω∥ = ∥(k − k′)ω∥ > 1
2q . (3.13)
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Divide T into the 2q arcs

Cj =
[
j

2q ,
j + 1

2q

)
, 0 ≤ j ≤ 2q − 1

with equal length |Cj| = 1
2q

.
By the observation in (3.13), each arc Cj contains at most one point

kω mod 1 with k ∈ {1, . . . , q − 1}, and by (3.4), the arcs C0 = [0, 1
2q

) and
C2q−1 = [2q−1

2q
, 1) do not contain any such point.

Moreover, if x ∈ Cj with 1 ≤ j ≤ q−1, then x ∈
[
0, 1

2

)
, and consequently,

∥x∥ ≥ j
2q

. On the other hand, if x ∈ Ck, with q ≤ k ≤ 2q − 1, thus x ∈
[

1
2 , 1

)
.

In this case, ∥x∥ ≥ 1 − k+1
2q

= 2q−k+1
2q

. Take j = 2q− k− 1, then k = 2q− j − 1
and

q ≤ k ≤ 2q − 1 ⇒ 0 ≤ 2q − k − 1 ≤ q − 1 ⇒ 0 ≤ j ≤ q − 1.

Hence, if x ∈ Ck with q ≤ k ≤ 2q − 1, it follows that x ∈ C2q−j−1 with
0 ≤ j ≤ q − 1 and ∥x∥ ≥ j

2q
. Using (3.12), it follows that

∑
1≤k<q

|EN(kω)| ≤
∑

1≤k<q

1
N ∥kω∥

≤ 1
N

q−1∑
j=1

4q
j

≤ const q
N

log q ,

which proves the lemma. ■

Theorem 3.4.1 Assume that the observable ϕ is an α-Hölder continuous
function on T and that the frequency ω ∈ T satisfies the Diophantine con-
dition (3.1). Then for all integers N we have∥∥∥∥ 1

N
ϕ(N) −

∫
T
ϕ

∥∥∥∥
∞

≤ const
(

1
γ

log 1
γ

)
∥ϕ∥α

log3α N

Nα
. (3.14)

Proof. Let ϕ ∈ Cα(T), fix N ≥ 1 (the length of the Birkhoff sum) and let
1 ≤ n ≤ N (the degree of polynomial approximation) to be chosen later.
Write

ϕ = ϕn + (ϕ− ϕn) =: ϕn + ψn ,

which implies that

1
N
ϕ(N) −

∫
T
ϕ =

( 1
N
ϕ(N)

n −
∫
T
ϕn

)
+
( 1
N
ψ(N)

n −
∫
T
ψn

)
. (3.15)

From (3.6) we clearly have∥∥∥∥ 1
N
ψ(N)

n −
∫
T
ψn

∥∥∥∥
∞

≤ const ∥ϕ∥α

1
nα

. (3.16)

The proof is then reduced to estimating the N -th Birkhoff average of the
trigonometric polynomial (of degree ≤ n) ϕn = ϕ ∗ Jn. By (3.11) applied to
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ϕn, for all x ∈ T we have:

1
N
ϕ(N)

n (x) −
∫
T
ϕn =

∑
1≤|k|≤n

ϕ̂n(k)EN(kω) e(kx) .

For all k ̸= 0, the corresponding Fourier coefficient of ϕn = Jn ∗ϕ satisfies

∣∣∣ϕ̂n(k)
∣∣∣ =

∣∣∣Ĵn(k) · ϕ̂(k)
∣∣∣ ≲ ∣∣∣ϕ̂(k)

∣∣∣ ≲ ∥ϕ∥α

1
|k|α

.

Since the sequence {qj}j≥1 of the denominators of the principal conver-
gents of ω is strictly increasing (Theorem 3.2.3), there is an integer s such that
qs ≤ n < qs+1.

Thus combining with the preceding, for all x ∈ T we have:
∣∣∣∣ 1
N
ϕ(N)

n (x) −
∫
T
ϕn

∣∣∣∣ ≤
∑

1≤|k|≤n

∣∣∣ϕ̂n(k)
∣∣∣ |EN(kω)| (3.17)

≤
∑

1≤|k|<qs+1

∣∣∣ϕ̂n(k)
∣∣∣ |EN(kω)|

≲ ∥ϕ∥α

∑
1≤|k|<qs+1

1
|k|α

|EN(kω)|

= ∥ϕ∥α

s∑
j=1

∑
qj≤|k|<qj+1

1
|k|α

|EN(kω)|

≤ ∥ϕ∥α

s∑
j=1

1
qα

j

∑
1≤|k|<qj+1

|EN(kω)|

≲ ∥ϕ∥α

1
N

 s∑
j=1

qj+1 log qj+1

qα
j


where the last estimate follows from Lemma 3.4.1.

If ω ∈ DC(T)γ, then using (3.5), for all 1 ≤ j ≤ s we have:

qj+1 log(qj+1)
qα

j

≲

(
1
γ
qj log2(qj + 1)

) (
log 1

γ
+ log(qj + 1)

)
qα

j

≲

(
1
γ

log 1
γ

)
q1−α

j log3(qj + 1)

≲

(
1
γ

log 1
γ

)
q1−α

j log3 n .

As mentioned earlier, qn ≤ 2−kqn+2k for all n, k ∈ N, hence

s∑
j=1

q1−α
j =

∑
1≤j≤s
j odd

q1−α
j +

∑
1≤j≤s
j even

q1−α
j ≲ q1−α

s ≤ n1−α .
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We obtained the following: if ω ∈ DC(T)γ and qs ≤ n < qs+1, then

s∑
j=1

qj+1 log qj+1

qα
j

≲

(
1
γ

log 1
γ

)
log3 n

s∑
j=1

q1−α
j

≲

(
1
γ

log 1
γ

)
n1−α log3 n . (3.18)

Combining (3.15), (3.16), (3.17), and (3.18) we obtain
∥∥∥∥ 1
N
ϕ(N) −

∫
T
ϕ

∥∥∥∥
∞

≤
∥∥∥∥( 1
N
ϕ(N)

n −
∫
T
ϕn

)∥∥∥∥
∞

+
∥∥∥∥( 1
N
ψ(N)

n −
∫
T
ψn

)∥∥∥∥
∞

≲ ∥ϕ∥α

1
N

 s∑
j=1

qj+1 log qj+1

qα
j

+ const ∥ϕ∥α

1
nα

≲

(
1
γ

log 1
γ

)
∥ϕ∥α

(
n1−α log3 n

N
+ 1
nα

)
.

The conclusion (3.14) then follows by choosing the degree of polynomial
approximation n =

⌊
N

log3 N

⌋
. ■

3.5
The higher dimensional torus translation case

In this section we establish our result on the rate of convergence of
the Birkhoff means of Hölder observables over a higher dimensional toral
translation. As in dimension one, we use approximations by trigonometric
polynomials.

Theorem 3.5.1 Let ϕ ∈ Cα(Td), let ω ∈ DC(Td)γ,A and let Tω : Td → Td be
the corresponding torus translation. Then for all N ≥ 1 we have

∥∥∥∥ 1
N
ϕ(N) −

∫
Td
ϕ

∥∥∥∥
∞

≤ const
γ

∥ϕ∥α

1
Nβ

where β = α
A+d

.

Proof.Fix N ≥ 1 and let n = O(N) (to be chosen later).
Let Jn : Td → R be the d-dimensional Jackson kernel defined in (3.8).

Recall that ϕn = ϕ ∗ Jn is a trigonometric polynomial of degree ≤ n on Td,
that is

ϕn(x) =
∑

|k|≤n

ϕ̂n(k) ek(x) =
∫
Td
ϕn +

∑
1≤|k|≤n

ϕ̂n(k) ek(x) .
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Hence,

1
N
ϕ(N)

n (x) −
∫
Td
ϕn = 1

N

[
ϕ(x) + . . .+ ϕ(x + (N − 1)ω) −N

∫
T
ϕ
]

= 1
N

N−1∑
j=0

∑
k ̸=0

ϕ̂n(k) e(jkω + kx)

=
∑
k ̸=0

ϕ̂n(k)
 1
N

N−1∑
j=0

e(jkω + kx)


Then

1
N
ϕ(N)

n (x) =
∫
Td
ϕn +

∑
1≤|k|≤n

ϕ̂n(k) 1
N
e

(N)
k (x) ,

so for all x ∈ Td,
∣∣∣∣ 1
N
ϕ(N)

n (x) −
∫
Td
ϕn

∣∣∣∣ ≤
∑

1≤|k|≤n

∣∣∣ϕ̂n(k)
∣∣∣ 1
N

∣∣∣e(N)
k (x)

∣∣∣ .
Let us estimate the Birkhoff sums of the multiplicative characters ek.

e
(N)
k (x) =

N−1∑
j=0

ek(x + jω) =
N−1∑
j=0

ek(x) ek(jω)

= ek(x)
N−1∑
j=0

e(k · jω) = ek(x)
N−1∑
j=0

e(j k · ω)

= ek(x) 1 − e(N k · ω)
1 − e(k · ω) .

Hence for all x ∈ Td, also using the Diophantine condition (3.2),

∣∣∣e(N)
k (x)

∣∣∣ ≤
∣∣∣∣∣1 − e(N k · ω)

1 − e(k · ω)

∣∣∣∣∣ ≤ 1
∥k · ω∥

≤ 1
γ

|k|A .

Combining this estimate on e
(N)
k with (3.10), it follows that

∣∣∣∣ 1
N
ϕ(N)

n (x) −
∫
Td
ϕn

∣∣∣∣ ≤
∑

1≤|k|≤n

∣∣∣ϕ̂n(k)
∣∣∣ 1
N

∣∣∣e(N)
k (x)

∣∣∣
≤ const

γ
∥ϕ∥α

1
N

∑
1≤|k|≤n

1
|k|α

|k|A

≤ const
γ

∥ϕ∥α

nA+d−α

N
.

Write
ϕ = ϕn + (ϕ− ϕn) =: ϕn + ψn .
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Combining the last estimate with (3.9) we have:
∥∥∥∥ 1
N
ϕ(N) −

∫
Td
ϕ

∥∥∥∥
∞

≤
∥∥∥∥( 1
N
ϕ(N)

n −
∫
T
ϕn

)∥∥∥∥
∞

+
∥∥∥∥( 1
N
ψ(N)

n −
∫
T
ψn

)∥∥∥∥
∞

≤ const
γ

∥ϕ∥α

nA+d−α

N
+ const ∥ϕ∥α

1
nα

≤ const
γ

∥ϕ∥α N
− α

A+d ,

provided we choose n := N
1

A+d . ■

As noted earlier, this higher dimensional result is likely not optimal.
The sharpness of the one dimensional result is due in large part to the use of
continued fractions, which allowed us a finer analysis of the Fouries series of
the Birkhoff sums.
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4
Mixed Markov-quasiperiodic base dynamics

We call mixed Markov-quasiperiodic dynamical system the product
between a Markov shift and a torus translation. The main goal of this chapter
is to establish a large deviations estimates for such systems with observables
depending on a finite number of coordinates.

4.1
Description of the model

Let Σ be a compact metric space, F be its Borel σ-algebra and denote
by Prob(Σ) the space of Borel probability measures on Σ, endowed with the
weak* topology.

Let us recall some concepts that were introduced in Chapter 2. A Markov
transition kernel on Σ is a continuous map K : Σ → Prob(Σ). Furthermore,
we say that µ ∈ Prob(Σ) is a K-stationary measure if

µ(E) =
∫
Kx(E) dµ(x)

for all E ∈ F .

Definition 4.1.1 We say that the kernel K : Σ → Prob(Σ) is uniformly
ergodic if there exist n ∈ N and c ∈ (0, 1) such that

∥∥∥Kn
ω0 − µ

∥∥∥
TV

≤ c

for every ω0 ∈ Σ, where ∥·∥TV is the total variation norm on Prob(Σ).

Let (Σ, K, µ) be a Markov system, that is, K : Σ → Prob(Σ) is a Markov
kernel on Σ and µ is a K-stationary measure. Let P = Pµ = PK = P(K,µ) denote
the Markov measure onX = ΣZ with initial distribution µ and transition kernel
K. The two-sided shift is the map σ : X → X such that

σ({xn}n∈Z) = {xn+1}n∈Z.

Then (X,P, σ) is a measure preserving dynamical system, which we call
a Markov shift.
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Definition 4.1.2 Let α ∈ Td. We call the map f : ΣZ × Td → ΣZ × Td

f(ω, θ) := (σω, θ + α)

a mixed Markov-quasiperiodic dynamical system.

In other words, f is simply the product between a Markov shift and a
translation on the d-dimensional torus. Hence (X ×Td, f,P×m) is a measure
preserving dynamical system, where m is the Lebesgue measure.

Moreover, if α ∈ Td is a rationally independent frequency, then f is
ergodic (see [29, Theorem 6.1]).

4.2
Large deviations estimates

In this section we establish large deviations estimates for this base
dynamics with observables that depend on a finite number of coordinates.
This result hold in fact for all θ ∈ Td, and it is uniform in θ.

We begin with the following lemma, which shows that for a full measure
set of points ω ∈ X, given any continuous observable ϕ : X × Td → R, the
corresponding Birkhoff averages converge uniformly in θ ∈ Td to the space
average.

Lemma 4.2.1 Let P be the Kolmogorov extension of (K,µ) on X = ΣZ.
There exists a full measure set X ′ ⊂ X such that given any observable
ϕ ∈ C0(X × Td), for all ω ∈ X ′ we have

lim
n→∞

1
n

n−1∑
j=0

ϕ(f j(ω, θ)) =
∫

X×Td
ϕ d(P ×m)

with uniform convergence in θ ∈ T d.

Proof. Let X := supp(P). As C0(X × Td) is a separable space, it admits a
countable and dense subset {ϕj : j ≥ 1}.

Denote by

Bj :=
{

(ω, θ) ∈ X × Td : lim
n→∞

1
n

n−1∑
i=0

ϕj(f i(ω, θ)) =
∫

X×Td
ϕj d(P ×m)

}
.

By Theorem 2.1.1, (P × m)(B) = 1, where B = ∩j≥1Bj. If we denote
Bθ = {ω ∈ X : (ω, θ) ∈ B} then for m-almost every θ ∈ Td,P(Bθ) = 1.

Fix θ0 ∈ Td such that P(Bθ0) = 1. By the density of {ϕj : j ≥ 1}
in C0(X × Td) and the definition of B, given ω ∈ Bθ0 , we have that for all
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ϕ ∈ C0(X × Td) and ε > 0, there exists n0 such that for all n ≥ n0 and for j
large enough
∣∣∣∣∣ 1n

n−1∑
i=0

ϕ(f i(ω, θ0)) −
∫
ϕ d(P ×m)| ≤

∣∣∣∣∣ 1n
n−1∑
i=0

ϕ(f i(ω, θ0)) −
n−1∑
i=0

ϕj(f i(ω, θ0))
∣∣∣∣∣+

+
∣∣∣∣∣ 1n

n−1∑
i=0

ϕj(f i(ω, θ0)) −
∫

X×Td
ϕj d(P ×m)

∣∣∣∣∣+
+
∣∣∣∣∫

X×Td
ϕj d(P ×m) −

∫
X×Td

ϕ d(P ×m)
∣∣∣∣

≤ ε

3 + ε

3 + ε

3
≤ ε.

On the other hand,

1
n

n−1∑
i=0

ϕ(f i(ω, θ0)) =
∫
ϕ d

(
1
n

n−1∑
i=0

δf i(ω,θ0)

)

hence, for P-almost every ω, the following weak* convergence holds:

1
n

n−1∑
i=0

δf i(ω,θ0) → P ×m. (4.1)

Consider the action of Td on X × T d given by θ · (ω, θ′) = (ω, θ + θ′).
This action induces a convolution of measure and for all ϕ ∈ C(X × Td),

∫
ϕ d(δθ−θ0 ∗ δfj(ω,θ0)) =

∫
ϕ(θ′ · (ω′, θ′′)) dδθ−θ0(θ′) dδfj(ω,θ0)(ω′, θ′′)

= ϕ((θ − θ0) · f j(ω, θ0))

= ϕ(f j(ω, θ))

=
∫
ϕ δfj(ω,θ)

that is, δθ−θ0 ∗δfj(ω,θ0) = δfj(ω,θ) for all j ≥ 1. Simillarly, δθ−θ0 ∗(P×m) = P×m.
Hence, by (4.1) and the weak* continuity of the convolution operation, for P-
almost every ω and every θ ∈ Td,

1
n

n−1∑
i=0

δf i(ω,θ) = 1
n

n−1∑
i=0

(δθ−θ0 ∗ δf i(ω,θ0)) → δθ−θ0 ∗ (P ×m) = P ×m.

Consequently, for P-almost every ω, for all ϕ ∈ C0(X×Td) and all θ ∈ Td,

1
n

n−1∑
i=0

ϕ(f i(ω, θ)) →
∫

X×Td
ϕ d(P ×m) .

Now, suppose that this convergence is not uniform in θ ∈ Td. That is, assume
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that there exist ω ∈ Bθ0 , ε > 0, nk → ∞ and θk ∈ Td for all k ≥ 1 such that
∣∣∣∣∣∣ 1
nk

nk−1∑
j=0

ϕ(f j(ω, θk)) −
∫

X×Td
ϕ d(P ×m)

∣∣∣∣∣∣ ≥ ε.

Since Td is compact, by passing to a subsequence we may assume that
θk → θ. On the other hand, by the uniform continuity of ϕ on the compact set
X × Td, we have that for k large enough

|ϕ(ω′, θk) − ϕ(ω′, θ)| < ε

2 , ∀ω′ ∈ X .

Then, for k sufficiently large we have∣∣∣∣∣∣ 1
nk

nk−1∑
j=0

ϕ(f j(ω, θ)) −
∫

X×Td
ϕ d(P ×m)

∣∣∣∣ ≤

≥

∣∣∣∣∣∣ 1
nk

nk−1∑
j=0

ϕ(f j(ω, θk)) −
∫

X×Td
ϕ d(P ×m)

∣∣∣∣∣∣
−

∣∣∣∣∣∣ 1
nk

nk−1∑
j=0

ϕ(f j(ω, θ)) − 1
nk

nk−1∑
j=0

ϕ(f j(ω, θk))

∣∣∣∣∣∣
≥ ε− ε

2
≥ ε

2

and this contradicts the pointwise convergence for θ. ■

We are now ready to state and prove the main result of this chapter, a
large deviations estimates for mixed Markov-quasiperiodic systems for observ-
ables that depend on finitely many coordinates. A related result in the case of
mixed random-quasiperiodic cocycle it may be found in [5].

Theorem 4.2.1 Let K be a uniformly ergodic Markov kernel on Σ, let µ be
its unique stationary measure and let P be the Kolmogorov extension of (K,µ)
on X = ΣZ. Let φ : X × Td → R be a continuous observable that depends
on a finite number of coordinates of ω ∈ X. Given any ε > 0, there exist
n̄ = n̄(ε, ϕ) ∈ N and c = c(ε, ϕ) > 0 such that for all θ ∈ Td and for all n ≥ n̄,
we have

P

ω ∈ X :

∣∣∣∣∣∣ 1n
n−1∑
j=0

ϕ(f j(ω, θ)) −
∫

X×Td
ϕ d(P ×m)

∣∣∣∣∣∣ ≥ ε

 < e−cn . (4.2)

Proof. Fix ε > 0. Replacing φ by −φ, it is enough to prove just the upper
bound in (4.2), that is, for ω outside an exponentially small set with respect
to the P measure and for all θ ∈ Td, we have
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1
n

n−1∑
j=0

ϕ(f j(ω, θ)) <
∫

X×Td
ϕ d(P ×m) + ε . (4.3)

Since φ is bounded, we may assume that ϕ ≥ 0. By Lemma 4.2.1, for
P-almost every ω ∈ X, define n(ω) = n(ω, ε) to be the first integer such that
for every θ ∈ Td,

1
n(ω)

n(ω)−1∑
j=0

ϕ(f j(ω, θ)) <
∫

X×Td
ϕ d(P ×m) + ε .

For each m ∈ N, define

Um := {ω ∈ X : n(ω) ≤ m}

=
m⋃

k=1

ω ∈ X : 1
k

k−1∑
j=0

ϕ(f j(ω, θ)) <
∫

X×Td
ϕ d(P ×m) + ε ∀θ ∈ Td

 .

The set Um is open since f and ϕ are continuous maps and Td is a
compact set. On the other hand, for every ω ∈ X, there exists m ∈ N such that
ω ∈ Um and clearly, for all n ≥ 1, Un ⊂ Un+1, hence Um ↗ X. Consequently,
P(Um) → P(X) = 1. Thus, there exists N = N(ε, ϕ) such that P(X \UN) < ε.

For all ω ∈ UN , we have 1 ≤ n(ω) ≤ N and for every θ ∈ Td

n(ω)−1∑
j=0

ϕ(f j(ω, θ)) < n(ω)
∫

X×Td
ϕ d(P ×m) + n(ω)ε . (4.4)

Fix ω ∈ X. We define a sequence of indices {nk = nk(ω)} and points
{ωk} by the following rule:

ω1 = ω, and n1 =

 n(ω1), if ω1 ∈ UN

1, if ω1 /∈ UN

And, for k ≥ 1, define

ωk+1 = σnkωk, and nk+1 =

 n(ωk+1), if ωk+1 ∈ UN

1, if ωk+1 /∈ UN

that is, ωk+1 = σn1+···+nkω.
Let n̄ := n̄(ε, ϕ) := N max{∥ϕ∥0

ε
, 1}, so n̄ ≥ N ≥ n1. Fix any n ≥ n̄. Note

that 1 ≤ nk ≤ N for all k ≥ 1. Hence, the sequence ak = ∑k
j=1 nj is such that

ak ↗ ∞ and, consequently, there exists p ∈ N such that

n1 + · · · + np ≤ n ≤ n1 + · · · + np+1

that is, there existsm such that n = n1+· · ·+np+m, where 0 ≤ m < np+1 ≤ N .
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Observe that

n−1∑
j=0

ϕ(f j(ω, θ)) =
n1−1∑
j=0

ϕ(f j(ω, θ)) +
n1+n2−1∑

j=n1

ϕ(f j(ω, θ)) + · · · +

n1+···+np−1∑
j=n1+···+np−1

ϕ(f j(ω, θ)) +
n−1∑

j=n1+···+np

ϕ(f j(ω, θ)).

Denote, respectively, by S1(ω, θ), S2(ω, θ), · · · , Sp(ω, θ) and Sp+1(ω, θ) the
p+ 1 sums in the previous inequality. From (4.4), we get

n1−1∑
j=0

ϕ(f j(ω, θ)) < n1

∫
X×Td

ϕ d(P ×m) + n1ε, if ω1 = ω ∈ UN

but, if ω1 = ω /∈ UN then n1 = 1 and S1(ω, θ) = ϕ(ω, θ) ≤ ∥ϕ∥0. On the other
hand, n1−1∑

j=0
ϕ(f j(ω, θ)) + n1ε

1UN
(ω) ≤

n1−1∑
j=0

ϕ(f j(ω, θ)) + n1ε

since we assume that ϕ ≥ 0. Hence,

S1(ω, θ) ≤ n1

∫
X×Td

ϕ d(P ×m) + n1ε+ ∥ϕ∥0 · 1X\UN
(ω) .

For the second sum, take j = n1 +l with l = 0, . . . , n2 −1. Thus, we can rewrite
the sum as:

S2(ω, θ) =
n1+n2−1∑

j=n1

ϕ(f j(ω, θ)) =
n2−1∑
l=0

ϕ(f l+n1(ω, θ))

and we can use a simular argument as the first sum S1(ω, θ). Hence,

S2(ω, θ) ≤ n2

∫
X×Td

ϕ d(P ×m) + n2ε+ ∥ϕ∥0 · 1X\UN
(σn1ω) .

Indictively, for p ≥ 1,

Sp(ω, θ) =
np−1∑
j=0

ϕ(f j+n1+···+np−1(ω, θ))

≤ np

∫
X×Td

ϕ d(P ×m) + npε+ ∥ϕ∥0 · 1X\UN
(σn1+···+np−1ω)

and since ϕ(ω, θ) ≤ ∥ϕ∥0, we have that

Sp+1(ω, θ) =
n−1∑

j=n1+···+np

ϕ(f j(ω, θ)) =
n1+···+np+m−1∑

j=n1+···+np

ϕ(f j(ω, θ)) ≤ m · ∥ϕ∥0

≤ N · ∥ϕ∥0 .
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On the other hand,

1X\UN
(ω1) + · · · + 1X\UN

(ωp) = 1X\UN
(ω1) + · · · + 1X\UN

(σn1+···+np−1ω)

≤
p−1∑
k=0

1X\UN
(σn1+···+nkω).

Hence,

n−1∑
j=0

ϕ(f j(ω, θ)) = S1(ω, θ) + · · · + Sp(ω, θ) + Sp+1(ω, θ)

≤ (n1 + · · · + np)
∫

X×Td
ϕ d(P ×m) + (n1 + · · · + np)ε

+ ∥ϕ∥0

p−1∑
k=0

1X\UN
(σn1+···+nkω) +N∥ϕ∥0

≤ n
∫

X×Td
ϕ d(P ×m) + nε+ ∥ϕ∥0

n−1∑
j=0

1X\UN
(σjω) +N∥ϕ∥0

< n
∫

X×Td
ϕ d(P ×m) + 2nε+ ∥ϕ∥0

n−1∑
j=0

1X\UN
(σjω).

Then, for all ω ∈ X, θ ∈ Td and n ≥ n̄,

1
n

n−1∑
j=0

ϕ(f j(ω, θ)) ≤
∫

X×Td
ϕ d(P ×m) + 2ε+ ∥ϕ∥0

1
n

n−1∑
j=0

1X\UN
(σjω). (4.5)

It remains to estimate the Birkhoff average over the Markov shift of the
indicator function 1X\UN

.
Note that since the observable ϕ depends on a finite number (say k0)

of coordinates, the set UN is determined by k := k0 + N coordinates. The
same holds for its complement X \ UN , which is a closed set. Hence, 1X\UN

depends on k coordinates and its n-th Birkhoff average depends on n+ k − 1
coordinates. Then, the function

h : Σn+k−1 → R, h(x0, . . . , xn+k−2) := 1
n

n−1∑
j=0

1X\UN
(σjω)

is well defined where ω = {ωj}j∈N with ω0 = x0, . . . , ωn+k−2 = xn+k−2.
Observe that the function h satisfies

|h(x0, . . . , xi−1, xi, xi+1, . . . , xn+k−2) − h(x0, . . . , xi−1, x
′
i, xi+1, . . . , xn+k−2)|≤

2k
n

that is, h has the bounded differences property.
A result in classical probabilities, McDiarmid’s inequality, states that

if X1, . . . , Xn are independent and identically distributed (i.i.d.) random
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variables and if h satisfies the bounded differences property, then for all ε > 0

P{|h(X1, . . . , Xn) − Eh(X1, . . . , Xn)| > ε} ≤ 2e−cε2n

where c > 0 depends explicitely on h. This is a generalization of the large
deviations principle, since the funtion h(x1, . . . , xn) = 1

n
(x1+· · ·+xn) obviously

satisfies the bounded differences property.
It turns out that McDiarmid’s inequality also holds for dynamical with

some hyperbolicity (see [9]). In particular it holds for Markov shifts with
uniformly ergodic transition kernels. Therefore, there exists a set Bn ⊂ Σn+k−1

with P(Bn) < e−c(ε)n, where c(ε) > 0, so that if (ω0, . . . , ωn+k−2) /∈ Bn then we
have

h(ω0, . . . , ωn+k−2) −
∫
h(ω0, . . . , ωn+k−2) dP < ε .

On the other hand,

∫
h(ω0, . . . , ωn+k−2) dP =

∫ 1
n

n−1∑
j=0

1X\UN
(σjω) dP(ω)

=
∫
1X\UN

(ω) dP(ω)

= P(X \ UN) < 3ε

which when combined with (4.5) implies (4.3). ■

DBD
PUC-Rio - Certificação Digital Nº 1821096/CA



5
Linear cocycles over Markov shifts

The main goal of this chapter is to study the continuity of the maximal
Lyapunov exponent of linear cocycles over Markov shifts (which we refer to as
Markov cocycles).

To this end, we formally introduce the concept of Markov cocycle (Section
5.1), then define the Markov operator and the stationary measure and study
their basic properties (Section 5.2). In Section 5.3 we establish the Kifer non-
random filtration for Markov cocycles, a more precise version of Oseledets
theorem in this context. As a corollary, under a generic assumption (quasi-
irreducibility), we obtain the uniform convergence of the expected value of the
finite scale directional Lyapunov exponent. This is then used in Section 5.4 to
establish the strong mixing of the Markov operator and the convergence (in
an appropriate sense) of its powers to the unique stationary measure. Finally,
in Section 5.5 we obtain the Hölder continuity of the Lyapunov exponent via
Furstenberg’s Formula.

5.1
Description of the model

Let Σ be a compact metric space and let F be its Borel σ-algebra. Let
Prob(Σ) denote the space of Borel probability measures on Σ and consider the
Wasserstein distance W1 in the space Prob(Σ). The Kantorovich-Rubinstein
theorem characterizes the Wasserstein distance as follows:

W1(µ, ν) = sup
φ ∈Lip1(Σ)

(∫
φ dµ−

∫
φ dν

)
.

Here Lip1(Σ) is the set of Lipschitz continuous functions on Σ with Lipschitz
constant ≤ 1. It is well known that this distance metrizes the weak* topology
(See [34]).

Definition 5.1.1 A Markov kernel is a transition map K : Σ → Prob(Σ), x 7→
Kx, such that for any Borel set E ∈ F , the function x 7→ Kx(E) is F -
measurable.
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The iterates of a Markov kernelK are defined recursively settingK1 := K

and for n ≥ 2, E ∈ F ,

Kn
x (E) :=

∫
X
Kn−1

y (E) dKx(y).

Each power Kn is itself a Markov kernel on (Σ,F).

Definition 5.1.2 A probability measure µ on (Σ,F) is called K-stationary if

µ(E) =
∫
Kx(E) dµ(x).

for all E ∈ F .

The above definition means that µ is stationary if µ is Kx-invariant on
average.

Definition 5.1.3 A Markov system is a pair (K,µ), where K is a Markov
Kernel on (Σ,F) and µ is a K-stationary probability measure.

Let (K,µ) be a Markov system. Consider the spaceX+ = ΣN of sequences
x = {xn}n∈N with xn ∈ Σ for all n ∈ N and let F+ be the product σ-field
F+ = FN generated by the F -cylinders. In other words, F+ is generated by
sets of the form

C(E0, . . . , Em) := {x ∈ X+ : xj ∈ Ej, for 0 ≤ j ≤ m},

where E0, . . . , Em ∈ F are measurable sets.

Definition 5.1.4 Given any probability measure θ on (Σ,F), the following
expression determines a pre-measure

P+
θ [C(E0, . . . , Em)] :=

∫
E0

∫
E1

· · ·
∫

Em

dKxm−1(xm) · · · dKx1(x0) dθ(x0)

on the semi-algebra of F -cylinders. By Carathéodory’s extension theorem this
pre-measures extends to a unique probability measure P+

θ on (X+,F+).

Markov systems are probabilistic evolutionary models, which can also be
studied in dynamical terms. Let (K,µ) be a Markov system and X = ΣZ be the
set of double sided sequences. The one-sided shift is the map σ : X+ → X+ such
that σ({xn}n∈N) = {xn+1}n∈N and the two-sided shift is the map σ : X → X

such that σ({xn}n∈Z) = {xn+1}n∈Z. The two-sided shift is the natural extension
of the one-sided shift. Then there is a unique probability measure Pµ on (X,F)
that projects to the corresponding Kolmogorov measures on (X+,F+) and we
will refer to the measure Pµ as the Kolmogorov extension of the Markov system
(K,µ).
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Definition 5.1.5 Given a Markov system (K,µ) let Pµ be the Kolmogorov
extension of (K,µ) on X = ΣN. The dynamical system (X,Pµ, σ) is called a
Markov system.

Given x ∈ Σ, we denote by Px = P(K,δx) the Markov measure on ΣN with
initial distribution δx and transition kernel K.

Consider a Markov system (K,µ) on a compact metric space Σ.

Definition 5.1.6 The following linear operator is called a Markov operator

(Qf)(x) = (QKf)(x) :=
∫
f(y) dKx(y) .

It is easy to verify that the powers Qn of the Markov operator Q satisfy

(Qn
Kf)(x) :=

∫
f(y) dKn

x (y)

for all n ≥ 1 and f ∈ L∞(Σ).

Definition 5.1.7 We say that the kernel K : Σ → Prob(Σ) is uniformly
ergodic if there exist n ∈ N and c ∈ (0, 1) such that

∥∥∥Kn
ω0 − µ

∥∥∥
TV

≤ c

for every ω0 ∈ Σ, where ∥·∥TV is the total variation norm on Prob(Σ).

This in particular implies the uniqueness (the existence is guaranteed
by general principles) of a K-stationary measure µ. In this case, Kn

ω0 → µ

uniformly in ω0 ∈ Σ relative to the total variation distance. Moreover, this is
equivalent to the following:

∥Qnφ−
∫
φ dµ∥∞ ≤ Cσn∥φ∥∞, ∀φ ∈ L∞(µ)

where Q is the Markov operator associated with K.

A measurable function A : Σ × Σ → GLm(R) induces the skew-product
dynamical system F = F(A,K) : X × Rm → X × Rm,

F (ω, v) = (σω,A(ω1, ω0)v) .

That is, F is a linear cocycle over the base dynamics (X,P(K,µ), σ), where
the fiber dynamics is induced by the map A. We refer to such a dynamical
system as a Markov cocycle.

DBD
PUC-Rio - Certificação Digital Nº 1821096/CA



Chapter 5. Linear cocycles over Markov shifts 63

Its iterates are given by

F n(ω, v) = (σnω,An(ω)v) ,

where for ω = {ωn}n∈Z ∈ X,

An(ω) = A(ωn, ωn−1) · · ·A(ω2, ω1)A(ω1, ω0) .

We identify the cocycle F(A,K) with the pair (A,K) and denote the
corresponding Lyapunov exponents by L1(A,K), . . . , Lm(A,K). A natural
question regards their dependence on the input data. In other words, what
is the regularity of the map (A,K) 7→ Li(A,K)?

In order to addres this question, let us introduce an appropriate space of
cocycles and its topology.

Define the projective cocycle F̂ : ΣN × P(Rm) → ΣN × P(Rm) by

F̂ (ω, v̂) = (σω, Â(ω1, ω0)v̂),

where v̂ ∈ P(Rm) is the projective point corresponding to a vector v ∈ Rn\{0}.
Consider the set of Markov cocycles

C := {(A,K) : A : Σ × Σ → GLm(R) is Lipschitz continuous and

K : Σ → Prob(Σ) is uniformly ergodic and

continuous in the weak* topology}.

This set is naturally endowed with a metric as follows:

d((A,K), (B,L)) := max{d∞(A,B), dW1(K,L)},

where if A,B ∈ Lip(Σ × Σ,GLm(R)) are two Lipschitz continuous fiber maps,

d∞(A,B) := sup
ω0,ω1∈Σ

∥A(ω0, ω1) −B(ω0, ω1)∥

and the distance between two Markov kernels K,L : Σ → Prob(Σ)

dW1(K,L) := sup
w0∈Σ

W1(Kw0 , Lw0),

where W1 is the Wasserstein distance in the space of probability measures
Prob(Σ).

Let Gr(Rm) denote the set of all linear subspaces of Rm.

Definition 5.1.8 A measurable section V : Σ → Gr(Rm) is called A-invariant
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when

A(ωn−1, ωn)V (ωn−1) = V (ωn), for P-a.e. ω = {ω}n∈Z ∈ X

We say that a section V : Σ → Gr(Rm) is proper if V (ω0) ⊊ Rm for every
ω0 ∈ Σ.

Definition 5.1.9 A Markov cocycle A is called quasi-irreducible w.r.t. (K,µ)
if there exists no measurable proper A-invariant section V : Σ → Gr(Rm) such
that L|V (ω0) < L1(A,K),∀ω0 ∈ Σ.

We are ready to formulate the main result of this chapter.

Theorem 5.1.1 Let (A,K) ∈ (C, d). Assume that:

(i) A is quasi irreducible with respect to (K,µ),

(ii) L1(A,K) > L2(A,K).

Then there exists a neighborhood V of (A,K) in (C, d) where the map (A,K) 7→
L1(A,K) is Hölder continuous.

This result extends [10, Theorem 5.1], where it was established the Hölder
continuity of the Lyapunov exponents with respect to the fiber map A. In the
present work we also allow the transition kernel K to vary, and prove the
joint Hölder continuity in (A,K) of the exponents. Moreover, the approach
used in this thesis is different from the one in [10] (which first establishes
uniform large deviations type estimates for the cocycle and then deduces the
Hölder continuity of the exponents from an abstract continuity theorem). The
advantage of the method employed here, besides being more straightforward,
is that it provides a more explicit, computable, value of the Hölder exponent.

In the case when the space Σ of symbols is finite, that is, when the base
dynamics is a sub-shift of finite type, there are other results available. Fixing
any fiber map, the maximal Lyapunov exponent depends analytically on the
transition probabilities, see [28]. This suggests that in our more general setting,
the regularity with respect to the transition kernel K might be much higher.
Moreover, the continuity of the Lyapunov exponent (but without a modulus
of continuity) was established in [25] without any irreducibility assumption,
assuming that the fiber dynamics is two dimensional and depends on only one
coordinate.

All of these results, including the one in this work, are in part inspired by
the seminal works of Furstenberg and Kifer [13], Le Page [24] and Peres [27].
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5.2
Stationary Measures

Let Σ be a compact metric space and let (K,µ) be the Markov system.
Let A : Σ×Σ → GLm(R) be a fiber map, which together with kernel K defines
the Markov cocycle F(A,K). We associate to this linear cocycle the Markov
kernel K̄ : Σ × Σ × P(Rm) → Prob(Σ × Σ × P(Rm)) given by

K̄(ω1, ω0, p̂) = Kω1 × δ(ω1,A(ω1,ω0)p̂). (5.1)

The Markov operator corresponding to this transition kernel is defined
by

(Q̄ψ)(ω1, ω0, p̂) =
∫
ψ(ω2, ω1, Â(ω1, ω0)p̂) dKω1(ω2)

for every ψ ∈ C0(Σ × Σ × P(Rm)).
Similarly, define the Markov kernel KA : Σ ×P(Rm) → Prob(Σ ×P(Rm))

by
KA(ω0, p̂)(·) = Kω0(·) ×

∫
Â(ω1,ω0)p̂

δ dKω0(ω1)

and consider the corresponding Markov operator Q(A,K) defined, for every
ϕ ∈ C0(Σ × P(Rm)), by

(Q(A,K)ϕ)(ω0, p̂) =
∫
ϕ(ω1, Â(ω1, ω0)p̂) dKω0(ω1). (5.2)

Moreover, we introduce a projection Π : C0(Σ × Σ × P(Rm)) → C0(Σ ×
P(Rm)):

Πψ(x0, p̂) =
∫
ψ(ω1, ω0, p̂) dKω0(ω1).

The following lemma relates these two Markov operators.

Lemma 5.2.1 With the notations above, we have Π ◦ Q̄ = Q(A,K) ◦ Π.

Proof. Given any ψ ∈ C0(Σ × Σ × P(Rm)), a direct computation shows that

Q(A,K) ◦ Πψ(ω0, p̂) =
∫

Πψ(ω1, Â(ω1, ω0)p̂) dKω0(ω1)

=
∫ ∫

ψ(ω2, ω1, Â(ω1, ω0)p̂) dKω1(ω2) dKω0(ω1).

On the other hand,

Π ◦ Q̄ψ(ω0, p̂) =
∫
Q̄φ(ω1, ω0, p̂) dKω0(ω1)

=
∫ ∫

ψ(ω2, ω1, Â(ω1, ω0)p̂) dKω1(ω2) dKω0(ω1),

proving that Π ◦ Q̄ = Q(A,K) ◦ Π. ■

We denote by ProbQ̄(Σ×Σ×P(Rm)) and ProbQ(Σ×P(Rm)), respectively,
the convex and compact (since Σ is compact) subspace of all K̄-stationary
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probability measures on Σ×Σ×P(Rm) and KA-stationary probability measure
on Σ × P(Rm).

The following proposition ensures the existence of a Q-stationary proba-
bility measure in Prob(Σ × P(Rm)), given a Q̄-stationary probability measure
in Prob(Σ × Σ × P(Rm)).

Proposition 5.2.1 Given m ∈ ProbQ̄(Σ × Σ × P(Rm)), there exists a unique
probability measure η ∈ Prob(Σ × P(Rm)) such that m = K ⋉ η, that is, for
every ψ ∈ C(Σ × Σ × P(Rm)),

∫
ψ(ω1, ω0, v̂) dm(ω1, ω0, v̂) =

∫
ψ(ω1, ω0, v̂) dKω0(ω1) dη(ω0, v̂).

Moreover, η is a Q-stationary probability measure.

Proof. Let m ∈ ProbQ̄(Σ×Σ×P(Rm)). Note that if ψ1, ψ2 ∈ C(Σ×Σ×P(Rm))
are such that Πψ1 = Πψ2 then

∫
ψ1 dm =

∫
ψ2 dm. In fact, suppose that

Πψ1(x, q̂) = Πψ2(x, q̂) for every (x, q̂) ∈ Σ × P(Rm) then
∫
ψ1(x2, x1, q̂) dKx1(x2) =

∫
ψ2(x2, x1, q̂) dKx1(x2), ∀(x1, q̂) ∈ Σ × P(Rm)

⇔
∫
ψ1(x2, x1, Â(x1, x0)p̂) dKx1(x2) =

∫
ψ2(x2, x1, Â(x1, x0)p̂) dKx1(x2)

⇔
∫
Q̄ψ1(x1, x0, p̂) dm(x1, x0, p̂) =

∫
Q̄ψ2(x1, x0, p̂) dm(x1, x0, p̂)

⇔
∫
ψ1(x1, x0, p̂) dm(x1, x0, p̂) =

∫
ψ2(x1, x0, p̂) dm(x1, x0, p̂),∀x0, x1, p̂.

By Riesz-Markov-Katutani’s theorem, there exists a unique probability mea-
sure η in Prob(Σ × P(Rm)) such that for every ψ ∈ C(Σ × Σ × P(Rm)),

∫
ψ dm =

∫
ϕ dη, where ϕ = Π ◦ ψ.

In other words,
∫
ψ(ω1, ω0, v̂) dm =

∫
ψ(ω1, ω0, v̂) dKω0(ω1)dη(ω0, v̂).

Moreover, let ψ ∈ C(Σ × Σ × P(Rm)) and ϕ ∈ C(Σ × P(Rm)) such that
ϕ = Π ◦ ψ. By the definition of η and since m is a Q̄-stationary probability
measure on Σ × Σ × P(Rm), it follows that

⟨ϕ, η⟩ = ⟨Π ◦ ψ, η⟩ = ⟨ψ,m⟩ = ⟨ψ, Q̄∗m⟩ = ⟨Q̄ψ,m⟩.

On the other hand,

⟨ϕ,Q∗η⟩ = ⟨Qϕ, η⟩ = ⟨Q(Π ◦ ψ), η⟩ = ⟨Π ◦ Q̄ψ, η⟩ = ⟨Q̄ψ,m⟩.
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Then,
⟨ϕ, η⟩ = ⟨ϕ,Q∗η⟩

and consequently, η is a Q-stationary probability measure on Σ × P(Rm). ■

The converse of the previous proposition is also true, so there is a
one-to-one correspondence between K̄-stationary measures and KA-stationary
measures. Thus certain properties of the Markov operator Q can easily be
transferred to Q̄.

Consider the projection π01 : ΣN × P(Rm) → Σ × Σ × P(Rm),

π01(ω, v̂) = (ω1, ω0, v̂)

for ω = {ωn}n∈N ∈ ΣN.

Proposition 5.2.2 Given η ∈ ProbQ(Σ×P(Rm)), there exists an F̂ -invariant
probability measure η̃ in Prob(ΣN × P(Rm)) such that (π01)∗η̃ = η.

Proof. Let ψ ∈ C(ΣN × P(Rm)) and define η̃ ∈ Prob(ΣN × P(Rm)) such that∫
ψ(ω, v̂) dη̃(ω, v̂) :=

∫
ψ(ω, v̂) dPω0(ω) dη(ω0, v̂) . (5.3)

Observe that (π01)∗η̃ = η. In fact, let A0 × B̂ ⊂ Σ ×P(Rm) be a cilinder.
Then,

η̃(π−1
01 (A0 × B̂)) =

∫
1π−1

01 (A0×B̂)(ω, v̂) dη̃(ω, v̂)

=
∫
1Σ×A0×Σ···×B̂(ω, v̂) dPω0(ω) dη(ω0, v̂)

=
∫
1A0×B̂(ω, v̂) dη(ω0, v̂)

= η(A0 × B̂).

Moreover, η̃ is an F̂ -invariant probability measure on ΣN × P(Rm). In fact,
since η ∈ ProbQ(Σ × P(Rm)), for every ϕ ∈ C(ΣN × P(Rm)),
∫

Σ×P(Rm)
ϕ(ω0, v̂) dη(ω0, v̂) =

∫
Σ×P(Rm)

(Qϕ)(ω0, v̂) dη(ω0, v̂)

=
∫

Σ×P(Rm)

∫
Σ
ϕ(ω1, Â(ω1, ω0)v̂) dKω0(ω1) dη(ω0, v̂).

Hence, given ψ ∈ C(ΣN × P(Rm))
∫
ψ(ω, v̂) dη̃(ω, v̂) =

∫
ψ(ω, v̂) dPω0(ω) dη(ω0, v̂)

=
∫
Q
(∫

ψ(ω, v̂) dPω0(ω)
)
dη(ω0, v̂)

=
∫

(ψ ◦ F̂ )(ω, v̂) dη̃(ω, v̂)
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proving that η̃ is an F̂ -invariant probability measure on ΣN × P(Rm). ■

Definition 5.2.1 An observable ϕ ∈ L∞(Σ × P(Rm)) is called η-stationary if
Qϕ(x, v̂) = ϕ(x, v̂) for η-almost every (x, v̂).

Definition 5.2.2 A Borel set F ⊂ Σ × P(Rm) is η-stationary if the indicator
function 1F is η-stationary. That is, F is an η-stationary set if and only if
for η-almost every (ω0, v̂) we have (ω1, Â(ω1, ω0)v̂) ∈ F , for Kω0-almost every
ω1 ∈ Σ.

The following proposition proves that the probability η is an extremal
point of ProbQ(Σ × P(Rm)) if and only if η̃ (defined by formula (5.3) is an
F̂ -ergodic probability measure.

Proposition 5.2.3 Given η ∈ ProbQ(Σ×P(Rm)), the following are equivalent

(i) η is an extremal point of ProbQ(Σ × P(Rm))

(ii) If F ⊂ Σ × P(Rm) is an η-stationary set then η(F ) = 0 or η(F ) = 1

(iii) If ϕ ∈ L∞(Σ × P(Rm)) is an η-stationary function then ϕ is a constant
function η-almost everywhere

(iv) The system (ΣN × P(Rm), F̂ , η̃) is ergodic.

Proof. We first prove that (i) implies (ii).
Let η be an extremal point of ProbQ(Σ × P(Rm)) and assume, by

contradiction, that there exists an η-stationary subset F ⊂ Σ × P(Rm) such
that t := η(F ) ∈ (0, 1). Then, the same holds for FC := (Σ ×P(Rm)) \F , that
is, FC is an η-stationary subset and η(FC) = 1 − t ∈ (0, 1).

Let ηF and ηF C be probability measures on Σ × P(Rm)) such that

ηF (E) = η(E ∩ F )
η(F ) and ηF C(E) = η(E ∩ FC)

η(FC) .

Observe that ηF ̸= ηF C since ηF (F ) = 1 and ηF C(F ) = 0. Moreover,
η = tηF + (1 − t)ηF C . So if we show that ηF and ηF C are Q-stationary
probability measures, we get a contradiction with η being an extremal point
of ProbQ(Σ × P(Rm)).

Since the indicator function 1F is an η-stationary function and η is a
Q-stationary probability measure, we have that for every ϕ ∈ C(Σ × P(Rm)),
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∫
Σ×P(Rm)

Qϕ dηF = 1
η(F )

∫
F
Qϕ dη

= 1
η(F )

∫
F

∫
Σ
ϕ(ω1, Â(ω1, ω0)v̂) dKω0(ω1) dη(ω0, v̂)

= 1
η(F )

∫
Σ×P(Rm)

∫
Σ
ϕ(ω1, Â(ω1, ω0)v̂)1F (ω0, v̂) dKω0(ω1) dη(ω0, v̂)

= 1
η(F )

∫
Σ×P(Rm)

∫
Σ
ϕ(ω1, Â(ω1, ω0)v̂)1F (ω1, Â(ω0, ω1)v̂) dKω0(ω1) dη(ω0, v̂)

= 1
η(F )

∫
Σ×P(Rm)

∫
Σ
(ϕ|F )(ω1, Â(ω1, ω0)v̂) dKω0(ω1) dη(ω0, v̂)

= 1
η(F )

∫
Σ×P(Rm)

Q(ϕ|F )(ω0, v̂) dη(ω0, v̂)

= 1
η(F )

∫
Σ×P(Rm)

(ϕ|F )(ω0, v̂) dη(ω0, v̂)

= 1
η(F )

∫
F
ϕ(ω0, v̂) dη(ω0, v̂)

=
∫

Σ×P(Rm)
ϕ dηF

and then ηF is an Q-stationary probability measure. Analogously, ηF C is also
Q-stationary and this contradicts the hypothesis that η is an extremal point
of ProbQ(Σ × P(Rm)).

Now, we will prove that (ii) implies (iii).
Consider the linear subspace

V := {ϕ ∈ L∞(Σ × P(Rm)) : ϕ is an η-stationary function}.

Note that V is a lattice. In fact, take ϕ ∈ V . Since η is Q-stationary,∫
(Q|ϕ| − |ϕ|) dη =

∫
Q|ϕ| dη −

∫
|ϕ| dη = 0. (5.4)

On the other hand, since ϕ ∈ V ,

|ϕ(ω0, v̂)| = |Qϕ(ω0, v̂)|

=
∣∣∣∣∫

Σ
ϕ(ω1, Â(ω1, ω0)v̂) dKω0(ω1)

∣∣∣∣
≤
∫

Σ
|ϕ(ω1, Â(ω1, ω0)v̂)| dKω0(ω1)

= Q|ϕ|(ω0, v̂)

for η-almost every (ω0, v̂). That is,

Q|ϕ| − |ϕ| ≥ 0, η-almost everywhere. (5.5)

Combining (5.4) and (5.5), we conclude that Q|ϕ| = |ϕ| for η-almost
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surely. Then |ϕ| ∈ V and this proves that V is a lattice. Moreover, if ϕ, ψ ∈ V
then max{ϕ, ψ} ∈ V .

Fix c ∈ R and consider the sub-level set

E = {(x, v̂) : ϕ(x, v̂) < c}.

To prove that (ii) implies (iii) it is enough to show that E is an η-stationary
set. Then, by hypothesis, η(E) = 0 or η(E) = 1 for all c ∈ R, proving that ϕ
is constant η-almost everywhere.

Let ϕn(x, v̂) = min{1, n ·max{c−ϕ(x, v̂), 0}}. Since ϕ ∈ V and 1 ∈ V , we
have that ϕn ∈ V . Clearly, ϕn → 1E as n → ∞ then Qϕn → Q1E as n → ∞.
On the other hand, ϕn = Qϕn for η-almost everywhere and since ϕn → 1E, it
follows that Q1E = 1E, η-almost surely and then the indicator function 1E is
η-stationary.

Suppose now that (iii) is true. We will prove that η̃ is an F̂ -ergodic
probability measure. Let ψ ∈ L∞(ΣN × P(Rm)) such that ψ ◦ F̂ = ψ, η̃-almost
everywhere. It is enough to prove that ψ is a constant function η̃-almost surely.

Consider ϕ : Σ × P(Rm) → R such that

ϕ(ω0, v̂) =
∫
ψ(ω, v̂) dP(ω).

We claim that ϕ is constant η-almost everywhere. For this, we show that ϕ is
an η-stationary function. Since ψ ◦ F̂ = ψ, η̃-almost surely,

Qϕ(ω0, v̂) =
∫

Σ
ϕ(ω1, Â(ω1, ω0)v̂) dKω0(ω1)

=
∫

Σ

∫
ΣN
ψ(. . . , ω2, ω1, Â(ω1, ω0)v̂) dP(ω) dKω0(ω1)

=
∫

ΣN
ψ(σω, Â(ω1, ω0)v̂) dP(ω)

=
∫

ΣN
ψ ◦ F̂ (ω, v̂) dP(ω)

=
∫

ΣN
ψ(ω, v̂) dP(ω) = ϕ(ω0, v̂), η-almost every (ω0, p̂).

Then, there exists c ∈ R such that ϕ(ω0, v̂) = c, η-almost every (ω0, v̂). Left
to show that ψ does not depend on ω = (ω0, ω1, . . . , ωk, . . .). Fix k ≥ 1, it is
enough to show that ψ is constant in (ω0, ω1, . . . , ωk−1).

Since ψ is F̂ -invariant, we have that ψ = ψ ◦ F̂ k for η̃-almost everywhere.
Hence,

∫
ψ({ωn}n∈N, v̂) dK∞

ωk
(ω) =

∫
ψ(σk(ω), Âk(ω)v̂) dP(ω)

= ϕ(ωk, Â
k(ω)v̂) = c, η-almost surely.
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Then, ψ is constant in (ω0, . . . , ωk−1, . . .) and then is constant in (ω, v̂), η̃-
almost every (ω, v̂).

It remains to proof that (iv) implies (i). Assume by contradiction that
η is not an extremal point of ProbQ(Σ × P(Rm)). Then, there exist t ∈ (0, 1)
and η1, η2 ∈ ProbQ(Σ × P(Rm)) such that

η = tη1 + (1 − t)η2.

Then, η̃ = tη̃1 + (1 − t)η̃2. In other words, η̃ is not an extremal point and,
consequently, η̃ is not an ergodic probability measure. ■

5.3
Kifer non-random filtration

For measure preserving dynamical systems, the Oseledets multiplicative
ergodic theorem improves the Furstenberg-Kesten theorem in that it provides
exponential rates of convergence of the iterates A(n)(ω) of the cocycle A along
all directions. Kifer [20] improved the Oseledets theorem in the setting of
random cocycles (i.e. linear cocycles over a Bernoulli shift) by proving the
existence of an invariant filtration that does not depend on the base point,
thus it is non-random. The main goal of this section is to derive a version of
this result in the context of Markov cocycles. For this, we follow the argument
presented in [4]. For another arguments providing a more complete version of
this result, see [8]. Moreover, assuming the quasi-irreducibility of the cocycle
we derive a Furstenberg-type formula and eventually the uniform convergence
of the expected value of the finite scale Lyapunov exponent.

Given (K,µ) a Markov system, consider the continuous observable ψ : Σ×
Σ × P(Rm) → R defined by

ψ(y, x, v̂) = log ∥A(y, x)v∥ (5.6)

where v is any unit vector representing the projective point v̂. The observable
ψ extends naturally to a function ψ̃ : ΣN × P(Rm) → R such that ψ̃ = ψ ◦ π01.

Consider the continuous linear functional α : ProbQ(Σ × P(Rm)) → R
defined by

α(η) :=
∫

Σ×Σ×P(Rm)
ψ(y, x, v̂) dKx(y)dη(x, v̂)

and define
β := max{α(η) : η ∈ ProbQ(Σ × P(Rm))} .

Theorem 5.3.1 Let (Σ, K, µ) be a Markov system and let A : Σ × Σ →
GLm(R) be a fiber map. Then
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(i) Given any (ω0, v) ∈ Σ × P(Rm),

lim sup 1
n

log ∥An(ω)v∥ ≤ β

for Pω0-almost every ω ∈ ΣN.

(ii) If the functional α is constant, then

lim 1
n

log ∥An(ω)v∥ = β

for Pµ-almost every ω ∈ ΣN.

(iii) For Pω0-almost every ω ∈ ΣN,

lim 1
n

log ∥An(ω)∥ = β .

In particular,

L1(A,K) = β =
∫

Σ×Σ×P(Rm)
ψ(y, x, v̂) dKx(y)dη(x, v̂)

which is a version of Furstenberg’s formula in this setting.

Proof. Let M = Σ × Σ × P(Rm) and let K̄ : M → Prob(M) be the kernel
defined in (5.1) and let ψ ∈ C0(M) be the continuous observable defined in
(5.6).

For each v ∈ Rd \ {0} consider a Markov chain Z v̂
n : ΣN → M with

transition kernel K̄, defined by

Z v̂
n(ω) := (ωn+1, ωn, Â

n(ω)v̂).

Items (i) and (ii) follow applying Theorem 2.6.4 and Theorem 2.6.5
respectively.

Let us now prove (iii). By Furstenberg-Kesten’s Theorem, the following
limit exists for P-almost every ω ∈ ΣN

lim 1
n

log ∥An(ω)∥ = L1(µ).

Fixing a basis {e1, . . . , em} of Rm, define the matrix norm

∥g∥′ = max
1≤i≤d

∥gei∥.
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The set of maximizing measures

M := {η ∈ ProbQ(Σ × P(Rm)) : α(η) = β}

is a non-empty compact convex set. By Krein-Milman Theorem there exists
an extremal point η of M and then this measure is also an extremal point
of ProbQ(Σ × P(Rm)). By proposition 5.2.3, η̃ is an F̂A-ergodic probability
measure. Thus, by Birkhoff Ergodic Theorem (Theorem 2.1.1), for η̃-almost
every (ω, v̂) ∈ ΣN × P(Rm),

β = α(η) =
∫

Σ×Σ×P(Rm)
ψ(x1, x0, v̂) dKx0(x1)dη(x, v̂)

=
∫

ΣN×P(Rm)
ψ̃(x, v̂) dη̃(x, v̂)

= lim
n→∞

1
n

n−1∑
j=0

ψ̃(F̂ j(ω, v̂))

= lim
n→∞

1
n

log ∥An(ω)v∥

≤ lim
n→∞

1
n

log ∥An(ω)∥ = lim
n→∞

1
n

log ∥An(ω)∥′

= max
1≤i≤d

lim
n→∞

1
n

log ∥An(ω)ei∥ ≤ β .

This proves (iii). ■

We are ready to state and prove a version of Kifer’s non random filtration
theorem for Markov cocycles.

Theorem 5.3.2 Given a Markov cocycle (A,K), there are numbers β0, β1 ∈ R
and an A-invariant section L1 : Σ → Gr(Rm) such that L1(ω0) ⊊ Rm and for
every v ∈ Rm \ L1(ω0)

lim 1
n

log ∥An(ω)v∥ = β0

while if v ∈ L1(ω0)
lim 1

n
log ∥An(ω)v∥ ≤ β1 .

Moreover, the numbers β0 and β1 are exactly the first and the second Lyapunov
exponents.

Proof. Consider the Markov chain {(ωn, A
n(ω)v)}n∈N on ΣN ×Rm. Recall that

An(ω) = A(ωn, ωn−1) ◦ · · ·A(ω2, ω1) ◦ A(ω1, ω0).

Let δ(ω0,v) be the initial distribution and denote by R the kernel of this
Markov chain.
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By Theorem 2.6.1, there exists a measure m on

F = {g : Σ × GLd(R) → Σ × GLd(R) : g is a Borel map}

such that
R(x,M)(E) = m{g ∈ F : g(x,M) ∈ E} .

Let g1, g2, . . . , gn, . . . ∈ F be independent and identically distributed
maps relative to m. For every ω ∈ Σ and n ≥ 1 consider fn : Σ → Σ and
Jn : Σ → GLd(R) such that gn(ω0, Id) := (fn(ω0), Jn(ω0)). Define f 0(ω0) = ω0,
J0(ω0) = Id and for every n ≥ 1,

fn = fn ◦ · · · ◦ f1,

Jn(ω) = Jn(fn−1(ω0))Jn−1(fn−2(ω0)) · · · J2(f 1(ω0))J1(ω0) .

The sequence {(fn(ω0), Jn(ω0)), n ∈ N} is a version of the Markov
chain (ωn, A

n(ω)). In fact, let F(n) be the σ-algebra generated by
{(fp(ω0), Jp(ω0)), p ≤ n}. Take y = fn(ω0) and M = Jn(ω0). If A is a
borel subset of Σ and B is a borelian subset of C, we have

E((fn+1(x), Jn+1(x)) ∈ A×B|F(n)) = P(fn+1(y) ∈ A, Jn+1(y)M ∈ B)

= P(gn+1(y, Id) ∈ A×BM−1)

= m{g : g(y, Id) ∈ A×BM−1}

= R(y,Id)(A×BM−1)

= R(y,M)(A×B) .

Define Fn : Σ × Rd → Σ × Rd such that

Fn(x, v) = (fn(x), Jn(x)v).

Note that Fn are independent and identically distributed maps and given any
initial (ω0, v) ∈ Σ × Rd, the Markov chain Fn ◦ · · · ◦ F1(ω0, v) in Σ × Rd is
a version of the Markov chain (ωn, A

n(ω)v) with the same initial distribution
δ(ω0,v).

To conclude the proof apply Theorem 2.6.3 to the Markov chain Fn. ■

An immediate consequence of the quasi-irreducibility condition (Defini-
tion 5.1.9) is the following:

Corollary 5.3.3 Assume that A is quasi-irreducible. Then the non-random
filtration is trivial, that is, L1(ω0) = {0} for every ω0 ∈ Σ. In particular,
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α(η) ≡ β = L1(A,K) for all η ∈ ProbQ(Σ × P(Rm)), so the functional α is
constant.

Proof. Assume by contradiction that the non-random filtration is not trivial.
Then L1(ω0) ̸= {0} for all ω0 ∈ Σ. Moreover, L1 is A-invariant and if
v ∈ L1(ω0)

lim 1
n

log ∥An(ω)v∥ ≤ β1 < β0

for Pω0-almost every ω ∈ ΣN. Contradicting the quasi-irreducibility of A.
This proves the non-random filtration is trivial. By item (iii) of Theorem

2.6.3, we have

α(η) ≡ β0 = β = L1(A) = lim
n→∞

1
n

log ∥An(ω)∥ ,Pω0-a.e.ω ∈ ΣN

for all η that is an extremal point of ProbQ(Σ×P(Rm)). By Krein-Milman and
the linearity of α(·), the result follows. ■

The following theorem ensures the uniform convergence of the expected
value in ω0.

Theorem 5.3.4 Let A be a Markov cocycle over a Markov system (K,µ)
such that A and A−1 are both measurable. If A is quasi-irreducible and
L1(A,K) > L2(A,K) then

lim
n→∞

1
n
Eω0(log ∥A(n)(ω)v∥) = L1(A,K),

with uniform convergence in (ω0, v̂) ∈ Σ × Sm−1.

Proof. Since A is quasi-irreducible, by Corollary 5.3.3 and the Lebesgue
dominated convergence theorem, we have the pointwise convergence:

lim
n→∞

Eω0

( 1
n

log ∥A(n)(ω)v∥
)

= L1(A) (5.7)

for every (ω0, v̂) ∈ Σ × Sm−1.
Assume first by contradiction that fixing ω0 ∈ Σ, the convergence in v̂ is

not uniform. Then there exist δ > 0 and a sequence {vn}n∈N ⊂ Sm−1 such that
∣∣∣∣Eω0

( 1
n

log ∥A(n)(ω)vn∥
)

− L1(A,K)
∣∣∣∣ ≥ δ, ∀k ≥ 1.

Since

Eω0

( 1
n

log ∥A(n)(ω)vn∥
)

≤

≤ Eω0

( 1
n

log ∥A(n)(ω)∥
)

→ L1(A,K) < L1(A,K) + δ

2 ,
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we have that for n ≤ N with N large enough, it can not happen that

Eω0

( 1
n

log ∥A(n)(ω)vn∥
)

≥ L1(A,K) + δ.

Thus we only need to consider the case with

Eω0

( 1
n

log ∥A(n)(ω)vn∥
)

≤ L1(A,K) − δ .

We are going to prove that this cannot happen either. First, we claim that

lim inf
n→∞

∥An(ω)vn∥
∥An(ω)∥ = c(ω) > 0

for Pµ-almost every ω ∈ ΣN.
Note that

∥An(ω)vn∥
∥An(ω)∥ ≥ |vn · v̄(n)(A)| → |v · v̄(∞)(A)|

where v̄(n)(A)(ω) ∈ Sm−1 is the most expanding direction of the n-th iterate
of An(ω) and v̄(∞)(A)(ω) is such that v̄(n)(A)(ω) → v̄(∞)(A)(ω).

On the other hand, v̄(∞)(A)⊥ is the sum of all invariant subspaces in the
Osedelets decomposition associated with Lyapunov exponents < L1(A,K).
Then, the quasi-irreducibility implies that

lim inf ∥An(ω)vn∥
∥An(ω)∥ > 0

Pµ-almost surely. Therefore,

1
n

log ∥An(ω)vn∥
∥An(ω)∥ → 0

almost surely as n → ∞. Using the Dominated Convergence Theorem

lim 1
n
Ex [log ∥An(ω)vn∥] = lim 1

n
Ex [log ∥An(ω)∥] + lim 1

n
Ex

[
log ∥An(ω)vn∥

∥An(ω)∥

]
= L1(A,K) + 0 = L1(A,K)

which establishes the claim and proves that the limit

lim
n→∞

1
n
Eω0(log ∥A(n)(ω)v∥) = L1(A,K),

is uniform in v̂ ∈ Sm−1 when ω0 ∈ Σ is fixed.
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Now it remains to prove that the previous limit is uniform in both (ω0, v̂).
For every M ∈ GLm(R), consider

χ(M) = sup{log ∥M∥, log ∥M∥−1}

and define gn : ΣN → R such that

gn(ω) = gn(ω0)

= sup
{∣∣∣∣ 1nEω0(log ∥A(n)(ω)v∥) − L1(A,K)

∣∣∣∣ : v ∈ Sm−1, ω = {ωn} ∈ ΣN
}
.

Since −χ(M) ≤ log ∥Mu∥ ≤ χ(M) for every u ∈ Sm−1, the sequence gn is
uniformly bounded and

|gn(ω)| ≤ 1
n
Eω0(χ(A(n)(ω)) + |L1(A,K)| .

Moreover, by (5.7), gn(ω) → 0 when n → ∞ for Pµ-a.e. ω ∈ ΣN. Hence,

lim
n→∞

∫
gn(ω) dPµ(ω) = 0.

Let p ∈ N such that p < n and consider

vp = Ap(ω)v
∥Ap(ω)v∥

.

Then∣∣∣∣ 1nEω0(log ∥A(n)(ω)v∥) − L1(A,K)
∣∣∣∣ ≤

≤
∣∣∣∣ 1nEω0(log ∥A(n−p)(fpω)vp∥) − L1(A,K)

∣∣∣∣+ ∣∣∣∣ 1nEω0(log ∥A(p)(ω)v∥)
∣∣∣∣

≤
∣∣∣∣ 1nEω0(Eωp(log ∥A(n−p)(fpω)vp∥)) − L1(A,K)

∣∣∣∣+ 1
n
Eω0(χ(A(p)(ω)))

≤ Eω0

(
1

n− p
Eωp(log ∥A(n−p)(fpω)vp∥) − L1(A,K)

)
+ p

n
(|L1(A,K)| + a) .

Hence,
gn(ω) ≤ Eω0(gn−p(fpω)) + p

n
(|L1(A,K)| + a) .

Since K is uniformly ergodic, there exists a sequence ϵ(p), where ϵ(p) → 0
when p → ∞, such that

sup
ω0∈Σ

∣∣∣∣∫ gn−p(y) dKp
ω0(y) −

∫
gn−p(y) dPω0(y)

∣∣∣∣ ≤ ϵ(p)

for every n.
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Then, for every p,

lim
n→∞

sup
ω0∈Σ

gn(ω0) ≤ lim
n→∞

∫
gn−p(y) dKp

ω0(y) + ϵ(p) ≤ ϵ(p),

and this concludes the proof. ■

5.4
Strong Mixing of the Markov Operator

In this section we show that the Markov operator Q(A,K) acts as a
contraction on an appropriate space of observables.

Consider on the projective space P(Rm) the distance

δ(p̂, q̂) := ∥p ∧ q∥
∥p∥∥q∥

,

where p and q are representatives of p̂ and q̂ respectively.
Given 0 < α ≤ 1 and ϕ ∈ L∞(Σ×P(Rm)), we define the Hölder seminorm

vα by:

vα(ϕ) = sup
ω0∈Σ
p̸̂=q̂

|ϕ(ω0, p̂) − ϕ(ω0, q̂)|
δ(p̂, q̂)α

,

Definition 5.4.1 The space of α-Hölder continuous functions on P(Rm) is
given by

Hα(Σ × P(Rm)) := {ϕ ∈ L∞(Σ × P(Rm)) : vα(ϕ) < ∞} .

The Hölder norm ∥ · ∥α on this space is defined by

∥ϕ∥α = ∥ϕ∥∞ + vα(ϕ).

Moreover, consider the average Hölder constant:

kα(A,K) = sup
ω0∈Σ
p̂ ̸=q̂

∫ δ(Â(ω1, ω0)p̂, Â(ω1, ω0)q̂)α

δ(p̂, q̂)α
dKω0(ω1).

Let QA,K : C0(Σ × P(Rm)) → C0(Σ × P(Rm)) be the Markov operator
defined in (5.2). Namely,

(Q(A,K)ϕ)(ω0, p̂) =
∫
ϕ(ω1, Â(ω1, ω0)p̂) dKω0(ω1)

for every ϕ ∈ C0(Σ × P(Rm)).
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Proposition 5.4.1 For all ϕ ∈ Hα(Σ × P(Rm)),

vα(QA,K(ϕ)) ≤ vα(ϕ)kα(A,K).

Proof. Given ϕ ∈ Hα(Σ × P(Rm)) and p̂, q̂ ∈ Σ × P(Rm),

|QA,K(ϕ)(p̂) −QA,K(ϕ)(q̂)|
δ(p̂, q̂)α

=

=

∣∣∣∫ ϕ(ω1, Â(ω1, ω0)p̂) − ϕ(ω1, Â(ω1, ω0)q̂) dKω0(ω1)
∣∣∣

δ(p̂, q̂)α

≤
∫ ∣∣∣∣∣ϕ(ω1, Â(ω1, ω0)p̂) − ϕ(ω1, Â(ω1, ω0)q̂)

δ(p̂, q̂)α

∣∣∣∣∣ dKω0(ω1)

≤ vα(ϕ)
∫ δ(Â(ω1, ω0)p̂, Â(ω1, ω0)q̂)α

δ(p̂, q̂)α
dKω0(ω1) .

Now, taking the supremum in ω0 ∈ Σ and p̂ ̸= q̂ ∈ P(Rm) on both sides we
conclude the proof. ■

Proposition 5.4.2 The sequence {kα(An, Kn)}n is sub-multiplicative:

kα(Am+n, Km+n) ≤ kα(An, Kn) · kα(Am, Km).

Proof. By definition,

kα(Am+n, Km+n) = sup
ω0∈Σ
p̂ ̸=q̂

∫ δ(Âm+n(ω)p̂, Âm+n(ω)q̂)α

δ(p̂, q̂)α
dKm+n

ω0 (ω1, ω2, . . . , ωm+n)

≤ kα(An, Kn) · kα(Am, Km)

and then, the sequence {kα(An, Kn)}n is sub-multiplicative. ■

Recall that we consider the metric space (C, d), where

C := {(A,K) : A : Σ × Σ → GLm(R) is Lipschitz continuous and

K : Σ → Prob(Σ) is uniformly ergodic and

continuous in the weak* topology.}

is the set of Markov cocycles and d is the metric defined as follows:

d((A,K), (B,L)) := max{d∞(A,B), dW1(K,L)},

Proposition 5.4.3 Fix n ∈ N. The map C ∋ (A,K) 7→ (An, Kn) is Lipschitz
with respect to the metric d.
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Proof. Note that the linear map A 7→ An is Lipschitz with constant C(n) that
depends on n but not on the kernel. Moreover, we claim that the map K 7→ Kn

is also Lipschitz with constant n: for every Markov kernel L : Σ → Prob(Σ),

d(K2, L2) = sup
ω0∈Σ

φ∈Lip1(Σ)

∣∣∣∣∫ φ(ω2) d(K2
ω0(ω2) − L2

ω0(ω2))
∣∣∣∣

= sup
ω0∈Σ

φ∈Lip1(Σ)

∣∣∣∣∫ φ(ω2) dKω1(ω2)dKω0(ω1) −
∫
φ(ω2) dLω1(ω2)dLω0(ω1)

∣∣∣∣
≤ sup

ω0∈Σ
φ∈Lip1(Σ)

∣∣∣∣∫ φ(ω2) dKω1(ω2)dKω0(ω1) −
∫
φ(ω2) dKω1(ω2)dLω0(ω1)

∣∣∣∣+
+
∣∣∣∣∫ φ(ω2) dKω1(ω2)dLω0(ω1) −

∫
φ(ω2) dLω1(ω2)dLω0(ω1)

∣∣∣∣
≤ 2d(K,L).

The proof of the claim follows by induction. Hence, the joint map (A,K) 7→
(An, Kn) is Lipschitz with constant the maximum between C(n) and n. ■

Lemma 5.4.1 Given a pair (A,K) ∈ (C, d), then for all α > 0,

kα(A,K) ≤ sup
ω0∈Σ

p̂∈P(Rm)

∫
Σ

(
s1(Â(ω1, ω0))s2(Â(ω1, ω0))

∥Â(ω1, ω0)p̂∥2

)α

dKω0(ω1),

where s1(·) and s2(·) are the first and second singular values.

Proof. It is enough to prove that given α > 0 and two points p̂, q̂ ∈ P(Rm), we
have[

δ(Â(ω)p̂, Â(ω)q̂)
δ(p̂, q̂)

]α

≤ |s1(A(ω))s2(A(ω))|α
2

[
1

∥A(ω)p∥2α
+ 1

∥A(ω)q∥2α

]

for every ω0 ∈ Σ.
In fact, if we integrate with respect to the measure Kω0 and take the

supremum in p̂ ̸= q̂ on both sides of this inequality, we conclude the lemma.
By the definition of the projective distance,[
δ(Â(ω)p̂, Â(ω)q̂)

δ(p̂, q̂)

]α

=
[

∥A(ω1, ω0)p ∧ A(ω1, ω0)q∥
∥A(ω)p∥∥A(ω)q∥

]α [ ∥p∥∥q∥
|∥p ∧ q∥

]α

. (5.8)

On the other hand, by the exterior product property,

∥A(ω1, ω0)p ∧ A(ω1, ω0)q∥ = |s1(A(ω1, ω0))s2(A(ω1, ω0))|∥p ∧ q∥.

which when combined with (5.8), we have
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[
δ(Â(ω)p̂, Â(ω)q̂)

δ(p̂, q̂)

]α

=
[

|s1(A(ω))s2(A(ω))|
∥A(ω)p∥∥A(ω)q∥

]α

≤ |s1(A(ω))s2(A(ω))|α
2

[
1

∥A(ω)p∥2α
+ 1

∥A(ω)q∥2α

]

since the geometric mean is less or equal than the arithmetic mean. ■

Proposition 5.4.4 Let (A,K) ∈ (C, d). Assume that

(i) A is quasi irreducible with respect to (K,µ),

(ii) L1(A,K) > L2(A,K).

Then, there are numbers δ > 0, 0 < α < 1, 0 < σ < 1 and n ∈ N such that for
all (B,L) ∈ (C, d) with d((B,L), (A,K)) < δ one has kα(Bn, Ln) < σ.

Proof. By theorem 5.3.4, given (A,K) ∈ (C, d) satisfying assumptions (i) and
(ii), we have

lim
n→∞

1
n
Eω0(log ∥A(n)(ω)v∥−2) = −2L1(A,K),

with uniform convergence in (ω0, v̂) ∈ Σ × Sd−1.
Hence, by choosing ϵ small enough e.g 1

4(L1(A,K) − L2(A,K)) and n

sufficiently large, we conclude that for all (ω0, v) ∈ Σ × Sm−1

Eω0(log ∥A(n)(ω)v∥−2) ≤ n(−2L1(A,K) + ϵ).

Let Λ2A denote its corresponding second exterior power. Note that

∥Λ2M∥ = s1(Λ2M) = s1(M) · s2(M)

for every M ∈ GLm(R). So in particular, L1(Λ2A) = L1(A) + L2(A).
Applying Theorem 5.3.1 to the cocycle Λ2A, we get that for every ω0 ∈ Σ

and for Pω0-almost every ω ∈ ΣN,

1
n

log ∥Λ2A
n(ω)∥ → L1(Λ2A) .

By dominated convergence,

lim
n→∞

Eω0

( 1
n

log ∥Λ2A
(n)(ω)∥

)
→ L1(Λ2A),

this shows that

lim
n→∞

Eω0

( 1
n

log s1(An(ω)) · s2(An(ω))
)

→ L1(A,K) + L2(A,K)
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So for n large enough

Eω0

( 1
n

log s1s2(An(ω))
)

≤ L1(A,K) + L2(A,K) + ε

Since L1(A,K) > L2(A,K), for n sufficiently large,

Eω0 log
[
s1(A(n)(ω))s2(A(n)(ω))

∥A(n)(ω)v∥2

]
≤ −1, (5.9)

for all (ω0, v̂) ∈ Σ × Sm−1.
By the inequality ex ≤ 1+x+ x2

2 e
|x|, we conclude that for every v ∈ Sm−1

and every ω0 ∈ Σ,

Eω0

[
|s1(A(n)(w))||s2(A(n)(ω))|

∥A(n)(ω)v∥2

]α

= Eω0 exp
(

log
[

|s1(A(n)(w))||s2(A(n)(ω))|
∥A(n)(ω)v∥2

]α)

≤ 1 + Eω0

[
α log |s1(A(n)(ω))||s2(A(n)(ω))|

∥A(n)(ω)v∥2

]
+

+ Eω0

[
α2

2 log2 |s1(A(n)(ω))||s2(A(n)(ω))|
∥A(n)(ω)v∥2 e

|α log |s1(A(n)(ω))s2(A(n)(ω))||
∥A(n)(ω)v∥2

]

≤ 1 − α + C
α2

2 .

Note that C is a constant that depends only on (A,K) and n. Thus, we can
choose α small enough such that

Eω0

[
|s1(A(n)(w))||s2(A(n)(ω))|

∥A(n)(ω)v∥2

]α

< 1.

Hence, by Lemma 5.4.1,

kα(A,K) ≤ sup
ω0∈Σ

p̂∈P(Rm)

Eω0 exp(log
[

|s1(A(n)(w))||s2(A(n)(ω))|
∥A(n)(ω)v∥2

]α

) ≤ 1.

Moreover, kα(A,K) depends continuously on (A,K) and, by proposition 5.4.3,
the map (A,K) 7→ (A(n), Kn) is Lipschitz, therefore we can extend the result
to a neighborhood of (A,K). ■

Let (E, ∥·∥E) be a Banach space where E ⊂ C0(M) is Q-invariant in
the sense that φ ∈ E if, and only if, Qφ ∈ E. Moreover, we assume that the
constant function 1 ∈ E and that the inclusion of E ⊂ C0(M) is continuous,
namely ∥φ∥∞ ≤ C1 ∥φ∥E for some constant C1 < ∞. We also assume that Q
is bounded (or continuous) on (E, ∥·∥E), i.e. ∥Qφ∥E ≤ C2 ∥φ∥E with C2 < ∞.
In practice we will have C1 = C2 = 1.
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Definition 5.4.2 (Strong mixing) Let (M,K, ν) be an abstract Markov
system and let Q : C0(M) → C0(M),

(Qφ)(x) :=
∫

M
φ(y) dKx(y)

be the associated Markov operator. Let (E, ∥ · ∥E) be a Banach space as above.
We say that Q is strongly mixing on E if there are C < ∞ and σ ∈ (0, 1) such
that for all n ∈ N and φ ∈ E,∥∥∥∥Qnφ−

∫
M
φdµ

∥∥∥∥
∞

≤ Cσn ∥φ∥E .

Note that for the Markov system (Σ, K, µ) that generates the base
dynamics, by assumption, we have Kn

ω0 → µ uniformly in ω0 ∈ Σ, which
is equivalent to the following:∥∥∥∥Qnφ−

∫
M
φdµ

∥∥∥∥
∞

≤ Cσn ∥φ∥∞

for some C < ∞ and 0 < σ < 1.
Thus Q is strongly mixing on L∞(µ) (this is strongest form of strong

mixing).
We will prove that the Markov operator Q(A,K), corresponding to the

Markov cocycle (A,K), is strongly mixing on the space of Hölder functions
Hα(Σ × P(Rm)). Indeed, this holds in a neighborhood of A as shown by the
following theorem.

Theorem 5.4.5 Given (A,K) ∈ (C, d) such that the assumptions of proposi-
tion 5.4.4 are satisfied, there exist constants C < ∞, 0 < σ < 1 and a neigh-
borhood U of (A,K) in (C, d) such that for all (B,L) ∈ U , QB,L is strongly
mixing on Hα(Σ × P(Rm)):

∥∥∥∥∥Qn
B,Lφ−

∫
Σ×P(Rm)

φdηB,L

∥∥∥∥∥
∞

≤ Cσn ∥φ∥α , ∀φ ∈ Hα(Σ × P(Rm)).

Moreover, since the vα seminorm is also exponentially contracting on Hα(Σ ×
P(Rm)), we further get

∥∥∥∥∥Qn
B,Lφ−

∫
Σ×P(Rm)

φdηB,L

∥∥∥∥∥
α

≤ Cσn ∥φ∥α , ∀φ ∈ Hα(Σ × P(Rm)).

Remark 5.1 The contraction constant σ can be choosen as the square root
of the minimum between the contracting rate of the vα seminorm and the
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convergence rate of the kernel L : Σ → Prob(Σ), and we may always choose
them to be the same by setting properly the size of the neighbourhood.

Proof. Take (B,L) ∈ U where U is given by Proposition 5.4.4, n ≥ m with
n,m ∈ N, φ ∈ Hα(Σ × P(Rm)) and ηB,L any LB-stationary measure, define 4
families of transformations in the following way: for any (ω0, p) ∈ Σ × P(Rm),

(1) (T (0)
B,L,nφ)(ω0, p) := (Qn

B,Lφ)(ω0, p) = Eω0 [φ(ωn, B
(n)p)].

(2) (T (1)
B,L,n,mφ)(ω0, p) := Eω0 [φ(ωn, (B(m) ◦ T n−m)p)].

(3) (T (2)
B,L,mφ)(ω0, p) := Eµ[φ(ωn, B

(m)p)], constant in ω0, thus we denote it
by (T (2)

B,L,mφ)(p) which is a compact transformation.

(4) (T (3)
B,Lφ)(ω0, p) :=

∫
φdηB,L, constant.

Then it is straightforward to obtain the following inequalities:

(1)
∣∣∣(T (0)

B,L,nφ)(ω0, p) − T
(1)
B,L,n,mφ)(ω0, p)

∣∣∣ ≤ Cσm ∥φ∥α for the same σ using
the contracting property of the vα seminorm.

(2)
∣∣∣T (1)

B,L,n,mφ)(ω0, p) − (T (2)
B,L,mφ)(p)

∣∣∣ ≤ Cσn−m ∥φ∥α using the uniform con-
vergence rate of Ln−m

ω0 → µ.
(3)

∣∣∣(T (2)
B,L,mφ)(p) − (T (2)

B,L,nφ)(p)
∣∣∣ ≤ Cσm ∥φ∥α using again the contracting

property of the vα seminorm.

For simplicity, we may set n = 2m in (1) and (2), and set n = l in (3),
then by (1)-(3), we have for all B ∈ U and φ ∈ Hα(Σ × P(Rm)),

∥∥∥Q2m
B,Lφ− T

(2)
B,L,lφ

∥∥∥
∞

≤ 3Cσm ∥φ∥α .

Note that the sequence {T (2)
B,L,lφ}l≥0 is relatively compact in C(P(Rm)). Then

the set Sφ of its limit points in (C(P(Rm)), ∥·∥∞) is non-empty. Considering
any g ∈ Sφ, we claim that

g =
∫
φdηB,L = T

(3)
B,Lφ.

Let us prove the claim. Take a subsequence lj → ∞ such that
{T (2)

B,L,lj
φ}j≥0 converges to g in the previous inequality, we get

∥∥∥Q2m
B,Lφ− g

∥∥∥
∞

≤ 3Cσm ∥φ∥α .

On the other hand, we have vα(Q2m
B,Lφ) ≤ Cσ2m ∥φ∥α. This implies

vα(g) = 0 which further implies that g is constant. Finally, using the condition
that ηB,L is LB-stationary, we have

∫
Q2m

B,LφdηB,L =
∫
φdηB,L
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which equals g. Take σ′ = σ
1
2 as a new parameter, and this completes the

proof. ■

Corollary 5.4.6 (Uniqueness of the stationary measure) Given
(A,K) ∈ (C, d) such that the assumptions of proposition 5.4.4 are satis-
fied, the Markov operator QB,L has a unique stationary measure η(B,L) for
every (B,L) ∈ U , which further gives that L̄B has a unique stationary measure
L⋉ ηB,L.

Proof. Assume there are two different stationary measures ηB,L and η′
B,L, using

Theorem 5.4.5 and the fact that Hα(Σ × P(Rm)) is dense in L∞(Σ × P(Rm)),
we get ηB,L = η′

B,L. ■

As a result, we can finally upgrade the Furstenberg formula as follows.

Theorem 5.4.7 Given (A,K) in (C, d) such that the assumptions of proposi-
tion 5.4.4 are satisfied, there exists a neighborhood U of (A,K) ∈ (C, d) such
that for every (B,L) ∈ U

L1(B,L) =
∫

Σ×Σ×P(Rm)
ψ(y, x, v̂) dLx(y)dηB,L(x, v̂)

where ψ : Σ × Σ × P(Rm) → R is such that

ψ(y, x, v̂) = log ∥A(y, x)v∥
∥v∥

and ηB,L is the unique QB,L-stationary measure.

5.5
Joint Continuity of the Lyapunov Exponents

In this section we establish the Hölder continuity of the maximal Lya-
punov exponents as a function of the input data, namely the fiber map A and
the transition kernel K. We use the technique introduced in [1]. This approach,
via the Furstenberg Formula, enables the study of this type of continuity with-
out the need of going through the theory of large deviations. Moreover, it also
has the advantage of providing a precise computation of the Hölder exponent.

Lemma 5.5.1 Given two differents p, q ∈ PRd \ {0},
∥∥∥∥∥ p

∥p∥
− q

∥q∥

∥∥∥∥∥ ≤ ∥p− q∥ max
{

1
∥p∥

,
1

∥q∥

}
.
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Corollary 5.5.1 Let g1, g2 ∈ SLd(R) and consider the projective actions,
ĝi : P(Rm) → P(Rm) taking p̂ to gi(p)

∥gi(p)∥ for i = 1, 2.
Then

δ(ĝ1p̂, ĝ2p̂) ≤ ∥g1 − g2∥ max
{

1
∥g1(p)∥

,
1

∥g2(p)∥

}
.

Proof. Observe that

δ(ĝ1p̂, ĝ2p̂) ≤
∥∥∥∥∥ g1(p)

∥g1(p)∥
− g2(q)

∥g2(q)∥

∥∥∥∥∥
Then, by Lemma 5.5.1,∥∥∥∥∥ g1(p)

∥g1(p)∥
− g2(q)

∥g2(q)∥

∥∥∥∥∥ ≤ ∥g1(p) − g2(p)∥ max
{

1
∥g1(p)∥

,
1

∥g2(p)∥

}

≤ ∥g1 − g2∥ max
{

1
∥g1(p)∥

,
1

∥g2(p)∥

}

■

In the next proposition, we show that for every quasi-irreducible Markov
cocycle and every n ∈ N, the map A 7→ Qn

A is locally Hölder. We extend it to
the mixing Markov case in (A,K). More precisely, we prove the following

Proposition 5.5.2 Let (A,K) ∈ (C, d). Assume that:

(i) A is quasi irreducible with respect to (K,µ),

(ii) L1(A,K) > L2(A,K).

Then, there exists δ > 0, such that for all (B,L) and (D,T ) in (C, d)
satisfying d((A,K), (B,L)) < δ and d((A,K), (D,T )) < δ, for all f ∈
Hα(Σ × P(Rm)) and every n ∈ N,

∥Qn
B,Lf −Qn

D,Tf∥∞ ≤ Cd((B,L), (D,T ))αvα(f).

Proof. First consider the case n = 1. Since

∥(QB,L −QD,T )(f)∥∞

= sup
v̂∈P(Rm)

ω0∈Σ

∣∣∣∣∫
Σ
f(ω1, B(ω1, ω0)v) dLω0(ω1) −

∫
Σ
f(ω1, D(ω1, ω0)v) dTω0(ω1)

∣∣∣∣
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For every ω0 ∈ Σ and v ∈ P(Rm),

∥(QB,L −QD,T )(f)∥∞

≤ sup
v̂∈P(Rm)

ω0∈Σ

∣∣∣∣∫
Σ
f(ω1, B(ω1, ω0)v) − f(ω1, D(ω1, ω0)v) dLω0(ω1)

∣∣∣∣+
+ sup

v̂∈P(Rm)
ω0∈Σ

∣∣∣∣∫
Σ
f(ω1, D(ω1, ω0)v) dLω0(ω1) −

∫
Σ
f(ω1, D(ω1, ω0)v) dTω0(ω1)

∣∣∣∣ .
Since f is Hölder, we can bound the first term by

sup
v̂∈P(Rm)

ω0∈Σ

∣∣∣∣∫
Σ
f(ω1, B(ω1, ω0)v) − f(ω1, D(ω1, ω0)v) dLω0(ω1)

∣∣∣∣ ≤

≤ sup
v̂∈P(Rm)

ω0∈Σ

∫
Σ

|f(ω1, B(ω1, ω0)v) − f(ω1, D(ω1, ω0)v)| dLω0(ω1)

≤
∫

Σ
vα(f) δ(B(ω1, ω0)v,D(ω1, ω0)v)α dLω0(ω1)

≤ vα(f) d∞(B,D)α

≤ vα(f) d((B,L), (D,T ))α

since
∫

Σ δ(B(ω1, ω0)v,D(ω1, ω0)v)α dLω0(ω1) ≤ d∞(B,D)α

Now we proceed to estimate the second term. By Corollary 5.5.1, for
every π ∈ Π(Lω0 , Tω0):

sup
v̂∈P(Rm)

ω0∈Σ

∣∣∣∣∫
Σ
f(ω1, D(ω1, ω0)v) dLω0(ω1) −

∫
Σ
f(z1, D(z1, ω0)v) dTω0(z1)

∣∣∣∣
= sup

v̂∈P(Rm)
ω0∈Σ

∣∣∣∣∫
Σ×Σ

f(ω1, D(ω1, ω0)v) − f(z1, D(z1, ω0)v) dπ(ω1, z1)
∣∣∣∣

≤ vα(f) sup
v̂∈P(Rm)

ω0∈Σ

∫
Σ×Σ

δ (D(ω1, ω0)v,D(z1, ω0)v)α dπ(ω1, z1)

Hence,

sup
v̂∈P(Rm)

ω0∈Σ

∣∣∣∣∫
Σ
f(ω1, D(ω1, ω0)v) dLω0(ω1) −

∫
Σ
f(z1, D(z1, ω0)v) dTω0(z1)

∣∣∣∣
≤ vα(f) sup

v̂∈P(Rm)
ω0∈Σ

∫
Σ×Σ

∥D(ω1, ω0) −D(z1, ω0)∥α×

× max
{

1
∥D(ω1, ω0)(v)∥ ,

1
∥D(z1, ω0)(v)∥

}α

dπ(ω1, z1).
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Since Σ is compact, there exists a constant C1 > 0, such that

max
{

1
∥D(ω1, ω0)(v)∥ ,

1
∥D(z1, ω0)(v)∥

}α

≤ C1.

Then, for every π ∈ Π(Lω0 , Tω0), we can bound the second term by

C1vα(f) sup
ω0∈Σ

∫
Σ×Σ

∥D(ω1, ω0) −D(z1, ω0)∥α dπ(ω1, z1)

≤ C2vα(f) sup
ω0∈Σ

(∫
Σ×Σ

∥(ω1, ω0) − (z1, ω0)∥ dπ(ω1, z1)
)α

≤ C2vα(f) d(L, T )α

≤ C2vα(f) d((B,L), (D,T ))α,

where on the second line we used the Lipschitz continuity of the map x 7→
D(x, y) and Jensen’s inequality together with the concavity of the function
t 7→ tα, which holds when t ∈ [0,∞) and α ∈ (0, 1].

Therefore, we conclude the case n = 1:

∥(QB,L −QD,T )(f)∥∞ ≤ C2vα(f) d((B,L), (D,T ))α.

Now observe that the differenceQn
B,L−Qn

D,T can be written as a telescopic
sum as follows:

Qn
B,L −Qn

D,T = Qn
B,L −QD,T ◦Qn−1

B,L +QD,T ◦Qn−1
B,L − · · · +Qn−1

D,T ◦QB,L −Qn
D,T

=
n−1∑
i=0

Qi
D,T ◦ (QB,L −QD,T ) ◦Qn−i−1

B,L .

Then, using the triangle inequality, the fact that the norm of the Markov
operator is 1 and the case n = 1, we obtain:

∥Qn
B,L(f) −Qn

D,T (f)∥ =
∥∥∥∥∥

n−1∑
i=0

Qi
D,T ◦ (QB,L −QD,T ) ◦Qn−i−1

B,L (f)
∥∥∥∥∥

∞

≤
n−1∑
i=0

∥∥∥Qi
D,T ◦ (QB,L −QD,T ) ◦Qn−i−1

B,L (f)
∥∥∥

∞

≤
n−1∑
i=0

∥∥∥(QB,L −QD,T ) ◦Qn−i−1
B,L (f)

∥∥∥
∞

≤ C2d((B,L), (D,T ))α
n−1∑
i=0

vα

(
Qn−i−1

B,L (f)
)
.

Since the operator contracts its seminorm vα (see propositions 5.4.1
and 5.4.4), we conclude that there exists δ > 0 and σ < 1 such that,
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if d((A,K), (B,L)) < δ, then kα(Bn, Ln) < σ. Moreover, since kα is sub
multiplicative, we conclude:

∥Qn
B,L(f) −Qn

D,T (f)∥ ≤ C2d((B,L), (D,T ))αvα(f)
∞∑

i=0
kα(Bi, Li)

≤ Cd((B,L), (D,T ))αvα(f).

■

Since the map (A,K) 7→ Qn
A,K is locally Hölder and Qn

A,K converges to
the stationary measure ηA,K (in the sense of 5.4.5), we can finally prove that
the map (A,K) 7→ ηA,K is also locally Hölder.

Corollary 5.5.3 Let (A,K) ∈ (C, d) such that the assumptions of proposition
5.4.4 are satisfied. Then there exists δ > 0 such that for all (B,L) and (D,T )
that are δ-close to (A,K) and for all f ∈ Hα(Σ × P(Rm)), we have

∣∣∣∣∫ f dηB,L −
∫
f dηD,T

∣∣∣∣ ≤ Cd((B,L), (D,T ))αvα(f).

Proof. By lemma 5.4.6, there are unique stationary measures ηB,L and ηD,T

associated with the Markov kernels LB and TD respectively. Moreover, by
theorem 5.4.5,

lim
n→∞

Qn
B,L(f) =

(∫
f dηB,L

)
1 and lim

n→∞
Qn

D,T (f) =
(∫

f dηD,T

)
1,

where 1 is the constant function such that 1(ω0, v) = 1.
Therefore, we conclude that:∣∣∣∣∫ f dηB,L −

∫
f dηD,T

∣∣∣∣ ≤ sup
n→∞

∥Qn
B,L(f) −Qn

D,T (f)∥

≤ Cd((B,L), (D,T ))αvα(f).

■

Given a kernel K : Σ → Prob(Σ) and a probability measure η on
Σ × P(Rm), let K ⋉ η be a probability measure on Σ × Σ × P(Rm) such that
for every ψ ∈ C(Σ × Σ × P(Rm)),

∫
ψ(ω1, ω0, v̂) d(K ⋉ η)(ω1, ω0, v̂) =

∫
ψ(ω1, ω0, v̂) dKω0(ω1) dη(ω0, v̂).

An immediate consequence of the previous corollary is that the map
(A,K) 7→ mA,K := K⋉ ηA,K is also locally Hölder, where mA,K is the unique
stationary measure on Prob(Σ × Σ × P(Rm)) associated to the kernel K̄.
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We are now ready to prove the local Hölder continuity of the Lyapunov
exponents.

Theorem 5.5.4 Let (A,K) ∈ (C, d). Assume that:

(i) A is quasi irreducible with respect to (K,µ),

(ii) L1(A,K) > L2(A,K).

Then, there exists a neighborhood V of (A,K) in (C, d) where the map
(A,K) 7→ L1(A,K) is Hölder continuous.

Proof. By hypotheses (i) and (ii), we are in the setting of Theorem 5.4.7, thus
we can express the top Lyapunov exponent L1(A,K) as

L1(A,K) =
∫

Σ×Σ×P(Rm)
ψA(ω1, ω0, v̂) dKω0(ω1)dηA,K(ω0, v̂) =

∫
ψA dmA,K ,

where ψA(ω1, ω0, v̂) = log ∥A(ω1,ω0)v∥
∥v∥ and mA,K is the unique stationary measure

associated to the Markov kernel K̄A.
Moreover, there exists a neighborhood V of (A,K) in (C, d) such that

for every (B,L) and (D,T ) in V , we can express their top Lyapunov exponent
using Furstenberg’s Formula.

Therefore, by corollary 5.5.3 and the fact that A 7→ ψA is locally
Lipschitz, we estimate:

|L1(B,L) − L1(D,T )| =
∣∣∣∣∫ ψB dmB,L −

∫
ψD dmD,T

∣∣∣∣
≤
∣∣∣∣∫ ψB dmB,L −

∫
ψB dmD,T

∣∣∣∣+ ∣∣∣∣∫ ψB dmD,T −
∫
ψD dmD,T

∣∣∣∣
≤ Cd((B,L), (D,T ))α

and this concludes the proof. ■

The Hölder coefficient α above is computable based on the input data.
More precisely, we iterate the cocycle (A,K) a sufficient number n of times,
until the inequality (5.9) holds (the existence of such a number of iterates is
guaranteed by the our assumptions). Then α is chosen such that 1−α+C α2

2 <

1, where the constant C depends explicitly on the data.
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6
Linear cocycles over mixed Markov-quasiperiodic dynamics

In this chapter we consider linear cocycles over mixed Markov-
quasiperiodic base dynamics. We begin whith the definition of the model (Sec-
tion 6.1) and after which we derive a version of Kifer’s non-random filtration
in this setting (Section 6.2). In the last section we obtain an upper large devia-
tions estimate for the fiber dynamics, and as a consequence of that, the upper
semi continuity of the Lyapunov exponent. This forms the starting point of
the study of mixed Markov-quasiperiodic cocycles, whose ultimate goal (left
for a future project) is to establish full large deviations and Hölder continuity
of the Lyapunov exponent for such cocycles.

6.1
The model

Let us recall the base dynamics that was introduced in the Chapter 4.
Let (Σ, K, µ) be a Markov system, that is, Σ is a compact metric space,

K : Σ → Prob(Σ) is a Markov kernel and µ is a K-stationary measure. Let P =
PK = P(K,µ) denote the Markov measure on X = ΣZ with initial distribution µ
and transition kernel K. The two-sided shift is the map σ : X → X such that

σ({xn}n∈Z) = {xn+1}n∈Z.

Then (X,P, σ) is a measure preserving dynamical system, which we call
a Markov shift.

Definition 6.1.1 Let α ∈ Td. We call the map f : ΣZ × Td → ΣZ × Td by

f(ω, θ) := (σω, θ + α)

a mixed Markov-quasiperiodic dynamical system.

Note that f is the product between a Markov shift and a translation on
the d-dimensional torus. Hence (f,P × m) is a measure preserving dynamical
system, where m is the Lebesgue measure on T d. Moreover, if α ∈ Td is a
rationally independent frequency, then f is ergodic (see [29, Theorem 6.1]).

DBD
PUC-Rio - Certificação Digital Nº 1821096/CA



Chapter 6. Linear cocycles over mixed Markov-quasiperiodic dynamics 92

A measurable function A : Σ × Σ × Td → GLm(R) induces the skew-
product dynamical system F = F(A,K) : ΣZ × Td × Rm → ΣZ × Td × Rm,

F (ω, θ, v) = (σω, θ + α,A(ω1, ω0, θ)v) .

That is, F is a linear cocycle over the base dynamics (ΣZ ×Td,P(K,µ), f),
where the fiber dynamics is induced by the map A. We refer to such a
dynamical system as a mixed Markov-quasiperiodic cocycle.

Its iterates are given by

F n(ω, θ, v) = (σnω, θ + nα,An(ω, θ)v)

where for ω = {ωn}n∈Z ∈ X,

An(ω, θ) = A(ωn, ωn−1, θ + (n− 1)α) · · ·A(ω2, ω1, θ + α)A(ω1, ω0, θ) .

By the Furstenberg-Kesten theorem (Theorem 2.3.1), the limit

lim
n→∞

1
n

log ∥An(ω, θ)∥

exists for Pµ ×m a.e. (ω, θ) ∈ X×Td, where m is the Lebesgue measure. Since
the base dynamics is ergodic with respect to Pµ × m, the limit is a constant
that depends on A and the kernel K and it is called the maximal Lyapunov
exponent of the cocycle F , which we denote by L1(A,K).

We identify the cocycle FA,K with the pair (A,K) and denote the
corresponding Lyapunov exponent by L1(A,K), . . . , Lm(A,K).

6.2
Kifer non-random filtration

In this section, we present the statement and the proof of the Kifer Non-
Random filtration in the case of Markov quasi-periodic cocycle.

First, we introduce some terminology.

Definition 6.2.1 We say that a Markov chain {Xn}n≥0 is a version of another
Markov chain {Yn}n≥0 over Px0 when they have the same kernel K and the
initial distribution is δx0 .

Now, we are now ready to statement and prove the to Its proof was
based the Kifer non-random filtration in the context of Markov quasi-periodic
cocycle. Its proof is based on [4, Lemma 2.6].

Theorem 6.2.1 For (µ × m)-almost every (ω0, θ) ∈ Σ × Td, there exists A-
invariant section L1 : Σ × Td → Gr(Rd) and two numbers β0, β1 such that
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L1(ω0, θ) ⊊ Rm and for every v ∈ Rm \ L1(ω0, θ)

lim 1
n

log ∥An(ω, θ)v∥ = β0

while if v ∈ L1(ω0)
lim 1

n
log ∥An(ω, θ)v∥ ≤ β1 .

Moreover, the numbers β0 and β1 are exactly the first and the second Lyapunov
exponents.

Proof. Let C be the set of quasi-periodic cocycles, that is,

C := {C̃ : Td×Rd → Td×Rd : C̃(θ, v) = (θ+α,C(θ)v), where C(θ) ∈ GLd(R)} .

Let K be a kernel on the space of symbols Σ and a measurable map
A : Σ × Σ → C. Consider the map J : Td × Rm → Td × Rm such that
J(θ, v) = (θ, v) and define the map An : ΣZ → C such that A0(ω) = J and for
every n ≥ 1

An(ω) = A(ωn, ωn−1) ◦ A(ωn−1, ωn−2) ◦ · · · ◦ A(ω1, ω0).

Consider the Markov chain (ωn, A
n(ω)) with initial distribution δ(ω0,J)

and let R be the kernel of this chain.
By Theorem 2.6.1, there exists a measure m on

F = {g : Σ × C → Σ × C : g is a Borel map}

such that
R(x,C̃)(E) = m{g ∈ F : g(x, C̃) ∈ E} .

Let g1, g2, . . . , gn, . . . ∈ F be independent and identically distributed
maps relative to m. For every ω ∈ Σ and n ≥ 1 consider fn : Σ → Σ and
Jn : Σ → C such that gn(ω0, J) := (fn(ω0), Jn(ω0)). Define f 0(ω0) = ω0,
J0(ω0) = J and for every n ≥ 1,

fn = fn ◦ · · · ◦ f1,

Jn(ω) = Jn(fn−1(ω0))Jn−1(fn−2(ω0)) · · · J2(f 1(ω0))J1(ω0) .

The sequence {(fn(ω0), Jn(ω0)), n ∈ N} is a version of the Markov
chain (ωn, A

n(ω)). In fact, let F(n) be the σ-algebra generated by
{(fp(ω0), Jp(ω0)), p ≤ n}. Take y = fn(ω0) and M = Jn(ω0). If A is a
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borel subset of Σ and B is a borelian subset of C, we have

E((fn+1(x), Jn+1(x)) ∈ A×B|F(n)) = P(fn+1(y) ∈ A, Jn+1(y)M ∈ B)

= P(gn+1(y, J) ∈ A×BM−1)

= m{g : g(y, J) ∈ A×BM−1}

= R(y,J)(A×BM−1)

= R(y,M)(A×B) .

Define Fn : Σ × Td × Rd → Σ × Td × Rd such that

Fn(x, θ, u) = (fn(x), Jn(x)(θ, u)).

Note that Fn are independent and identically distributed maps and given any
initial (ω0, θ, v) ∈ Σ × Td × Rd, the Markov chain Fn ◦ · · · ◦ F1(ω0, θ, v) in
Σ × Td × Rd is a version of the Markov chain (ωn, A

n(ω)(θ, v)) with the same
initial distribution δ(ω0,θ,v).

We conclude the rest of the proof applying Theorem 2.6.3 to the Markov
chain Fn. ■

6.3
Upper large deviations on the fiber

In this section we obtain an upper large deviations estimate for the fiber
dynamics, and as a consequence of that, the upper semi continuity of the
maximal Lyapunov exponent.

For this, we start with a simple topological lemma to be used later.

Lemma 6.3.1 Let (M,d) be a metric space and let ν be a Borel probability
measure on M . Given a closed set L ⊂ M and ε > 0 there are an open
sets D ⊃ L such that ν(D) < ν(L) + ε and a Lipschitz continuous function
g : M → [0, 1] such that 1L ≤ g ≤ 1D.

Proof. For every δ > 0, let Lδ be the open δ-neighborhood of L, that is,

Lδ := {x ∈ M : d(x, L) < δ} .

Since L is a closed set we have that L = ∩δ>0Lδ. Then, ν(Lδ) → ν(L)
as δ → 0 and, consequently, there exists δ0 = δ0(L, ε, ν) > 0 such that
ν(Lδ0) < ν(L) + ε.
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Consider D := Lδ0 and note that d(L,DC) = d(L,LC
δ0) ≥ δ0 > 0. Define

the function g : M → R such that

g(x) := d(x,DC)
d(x,DC) + d(x, L) .

It is easy to check that g is a Lipschitz continuous map with ∥g∥Lip ≤ 1
δ0

, while
clearly 1L ≤ g1D. ■

Fix a number M < ∞. Let CM = {(α,A) ∈ C : ∥A∥0 ≤ M}, and consider
the mixed Markov-quasiperiodic dynamics f on ΣZ × Td.

Theorem 6.3.1 Let (K,µ) be a Markov system. Given any ε > 0, there are
δ = δ(ε,K,M) > 0, n̄ = n̄(ε,K,M) ∈ N and c = c(ε,K,M) > 0 such that for
all kernel K ′ : Σ → Prob(Σ) with dW1(K,K ′) < δ, for all θ ∈ Td and for all
n ≥ n̄ we have

PK′,µ′

{
ω ∈ X : 1

n
log ∥An(ω)(θ)∥ ≥ L1(K) + ε

}
< e−cn (6.1)

where µ′ is the stationary measure of K ′. Moreover, the map K ′ → L1(K ′) is
upper semicontinuous with respect to the Wasserstein metric dW1.

A related result in the case of mixed random-quasiperiodic cocycle it may
be found in [5].
Proof. Let

an(ω, θ) := log ∥An(ω)(θ)∥

and note that {an}n∈N is an f -subadditive sequence, that is, for all n,m ∈ N
and (ω, θ) ∈ X × Td we have

an+m(ω, θ) ≤ an(ω, θ) + am(F n(ω, θ)) .

For (ω, θ) ∈ X × Td, let n(ω, θ) be the first positive integer n such that
1
n
an(ω, θ) < L1(K) + ε . (6.2)

For each m ∈ N, define

Um := {(ω, θ) ∈ X × Td : n(ω, θ) ≤ m}.

By Theorem , n(ω, θ) is defined for (P(K,µ) × m)-almost every (ω, θ). Hence,
Um increases to a full (P(K,µ) ×m)-measure set as m → ∞. Then, there exists
N = N(ε,K) such that (P(K,µ) ×m)(X \ UN) < ε.

Let C = C(M,K) := sup{log ∥A(ω)(θ) : ω ∈ X, θ ∈ Td∥} < ∞. Fix
(ω, θ) ∈ X × Td and define the sequence of indices {nk = nk(ω, θ)}k≥1 and
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points {(ωk, θk)} as follows:

(ω1, θ1) = (ω, θ), and n1 =

 n(ω1, θ1), if (ω1, θ1) ∈ UN

1, if (ω1, θ1) /∈ UN

And, for k ≥ 1, define

(ωk+1, θk+1) = fnk(ωk, θk)

and

nk+1 =

 n(ωk+1, θk+1), if (ωk+1, θk+1) ∈ UN

1, if (ωk+1, θk+1) /∈ UN

that is, (ωk+1, θk+1) = fn1+···+nk(ω, θ).
Let n̄ := n̄(ε, L,M) := N max{C

ε
, 1}, so n̄ ≥ N ≥ n1. Fix any n ≥ n̄.

Note that 1 ≤ nk ≤ N for all k ≥ 1. Hence, the sequence ak = ∑k
j=1 nj is such

that ak ↗ ∞ and, consequently, there exists p ∈ N such that

n1 + · · · + np ≤ n ≤ n1 + · · · + np+1

that is, there existsm such that n = n1+· · ·+np+m, where 0 ≤ m < np+1 ≤ N .
Using the subadditivity of the sequence {an}n≥1 it follows that

an(ω, θ) ≤ an1(ω, θ) + an2(fn1(ω, θ)) + · · · + anp(fn1+···+np−1(ω, θ))

+ am(fn1+···+np(ω, θ)) .

From (6.2), we get

an1(ω, θ) ≤ n1(L1(L) + ε), if (ω, θ) ∈ UN

but, if (ω, θ) /∈ UN then n1 = 1 and an1(ω, θ) ≤ C. Hence,

an1(ω, θ) ≤ n1(L1(L) + ε) + C · 1X\UN
(ω, θ) .

For the second term,

an2(fn1(ω, θ)) ≤ n2(L1(L) + ε), if fn1(ω, θ) ∈ UN

otherwise, n2 = 1 and an2(ω, θ) ≤ C. Hence,

an2(fn1(ω, θ)) ≤ n2(L1(L) + ε) + C · 1X\UN
(fn1(ω, θ)) .
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Indictively, for k ≥ 1,

ank
(fn1+···+nk−1(ω, θ)) ≤ nk(L1(L) + ε) + C · 1X\UN

(fn1+···+nk−1(ω, θ)) .

Using the subadditivity of the sequence {an}, it follows that

an(ω, θ) ≤ (n1 + · · · + np)(L1(L) + ε) + C
n−1∑
j=0

1X\UN
(f j(ω, θ)) + CN .

Hence for all (ω, θ) ∈ X × Td and for all n ≥ n̄ we have

1
n

log ∥An(ω)(θ)∥ ≤ L1(L) + 2ε+ C · 1
n

n−1∑
j=0

1X\UN
(f j(ω, θ)) .

Note that the closed set UC
m ⊂ X × Td is determined by the coordinates

ω0, . . . , ωN−1 and θ. By Lemma 6.3.1, there are an open set D ⊃ Um with
(PK,µ × m)(D) < 2ε and a Lipschitz continuous function g : X × Td → [0, 1]
which depend only on the coordinates ω0, . . . , ωN−1, θ such that 1UC

m
≤ g ≤ 1D.

Then, for all (ω, θ) ∈ X × Td and n ≥ n̄ we have

1
n

n−1∑
j=0

1UC
m

(f j(ω, θ)) < 1
n

n−1∑
j=0

g(f j(ω, θ)) .

Applying Theorem 4.2.1 to g, for any kernel K ′ : Σ → Prob(Σ) that is
sufficiently close to K : Σ → Prob(Σ) in the Wasserstein distance dW1 and for
all θ ∈ Td we have:

1
n

n−1∑
j=0

g(f j(ω, θ)) <
∫
g d(PK,µ ×m) + ε

for ω outside a set of PK′,µ-measure < e−cn, where c = c(ε,K) > 0.
Moreover,

∫
g d(PK,µ ×m) ≤

∫
1D d(PK,µ ×m) = (PK,µ ×m)(D) < 2ε

which combined with previous estimates proves (6.1).
LetK ′ be a kernel close enough toK in the Wasserstein metric dW1 . Using

the estimate (6.1) and integrating with respect to the measure PK′,µ × m for
all large enough

∫ 1
n

log ∥An(ω, θ)∥ d(PK′,µ ×m) < L1(K) + 2ε .

Letting n → ∞, we conclude that L1(K ′) < L1(K) + 2ε. ■
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7
Future works

A first future project concerns the study of fiber large deviations esti-
mates (See definition 2.5.2) and of Hölder continuity properties of the Lya-
punov exponents of mixed Markov-quasiperiodic cocycle as functions of the
input data.

Using Kifer’s non-random filtration (Theorem 2.6.3), we will establish
an analogue in this context of the uniform convergence (Theorem 5.3.4) for
Markov cocycles.

The Markov operator corresponding to mixed Markov-quasiperiodic co-
cycles will not be strongly mixing in the sense of Definition 5.4.2. By analogy
with the mixed random-quasiperiodic cocycles studied by Cai, Duarte and
Klein, the spectrum of this operator, when restricted to the space of Hölder
continuous observables, will likely consist of a set K ⊂ D̄σ(0), o ≤ σ < 1 plus
the entire unit circle, which is a type of spectral gap, but not in the sense
usually understood in the literature. The uniform convergence rate in Chapter
3 will play a vital role in dealing with the peripheral spectrum (which, again,
is the entire unit circle).

A second future project concerns large deviations estimates for mixed
Markov-quasiperiodic dynamical system with more general observables. The
approach used to prove Theorem 4.2.1 will clearly not be applicable in this
more general setting.

A third future project is the study of the stability of the Lyapunov
exponents of quasiperiodic cocycles under Markovian noise.
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