

3 Large Scale Video Recommendations

3.1. Introduction

The largest online shopping sites today offer millions of items for sale in its catalog.

By the same way, video portals like YouTube also have dozens of millions of items,

with thousands of new content being published every day. Since choosing among

so many options is challenging for consumers, recommender systems have emerged

in response to this problem, and are now a fundamental component of video

services like Netflix, YouTube, DailyMotion, etc. The goal of a recommender

system in this case is to recommend items that are likely to fit the user expectations.

Today, recommender systems are deployed on hundreds of different sites, serving

millions of consumers. As discussed previously, one of the earliest and most

successful recommender technologies is collaborative filtering [11, 12, 13, 14].

Collaborative filtering (CF) works by building a database of preferences for items

by users, and has been very successful in both research and practice. However, there

remain important research questions in overcoming two fundamental challenges for

collaborative filtering recommender systems.

The first challenge is to improve the scalability of the memory-based

collaborative filtering algorithms. These algorithms are able to search tens of

thousands of potential neighbors in real-time, but the demands of modern Internet

systems are to search tens of millions of potential neighbors. Further, existing

algorithms have performance problems with individual users for whom the site has

large amounts of information. For instance, if a site is using browsing patterns as

indications of item preference, it may have thousands of data points for its most

valuable customers. These “long customer rows” slow down the number of

neighbors that can be searched per second, further reducing scalability. The second

challenge is to improve the quality of the recommendations for the consumers. Users

need recommendations they can trust to help them find items they will like. In some

ways these two challenges are in conflict, since the less time an algorithm spends

searching for neighbors, the more scalable it will be, and the worse its quality. For

DBD
PUC-Rio - Certificação Digital Nº 1122198/CA

41

this reason, it is important to treat the two challenges simultaneously so the solutions

discovered are both useful and practical.

3.2. Item-Item Video Recommendations

As discussed previously, the idea behind an item-item recommendation engine

is, for any given item, finding a set of items that is most similar to the item in

question. Similarity is measured using a combination of input data, generally

structured in a bi-dimensional matrix with the first dimension representing users and

the second items. The ultimate goals of an item-item recommendation system are to

predict how users would rate an item that is not yet rated, and to recommend items

from the collection. In a video recommendation system, an item-item collaborative

filtering could be used to provide recommendations in an approach “who liked this

video might also like these …”.

With respect to user ratings, recommendation engines may use different types

of feedback. Ideally, explicit feedback is preferred, with users explicitly indicating

their preferences. Netflix uses explicit user feedback through star ratings as shown

in Figure 6, for example, while YouTube uses “thumbs up” and “thumbs down” as

its explicit feedback, as shown in Figure 7.

Figure 6 - Netflix Star Ratings for explicit feedback

DBD
PUC-Rio - Certificação Digital Nº 1122198/CA

42

Figure 7 - YouTube "Thumbs up" / "Thumbs Down" explicit feedback

However, there are situations where such information is not available. In these

cases, it is necessary to infer user preferences through implicit feedback [55], which

indirectly represents a user’s preferences based on his/her behavior. Implicit

feedback is obtained from user navigation history, the list of products bought, and

even from the mouse path on specific screens. For videos, this implicit feedback

could be obtained through the playback duration, video seek (rewind or forward),

player visibility during the playback and different user interactions with the player

beyond others [56].

After obtaining user feedback, for example, information that a user start

playing a particular video, the input can be stored in a square matrix representing

users and items, where, in this case, each element denotes whether an item was

accessed by a user. Thus, considering each item separately, we have a

multidimensional vector with each dimension representing a user. Consequently, as

the number of distinct users in the system increases, the number of dimensions in

the vector also increases. Typically, large video portals have tens or even hundreds

of millions of unique visitors per month, which means that their item vectors will

have a similar number of dimensions.

Therefore, the problem of obtaining the similarity between two specific items

can be translated into one of obtaining the similarity between the two

multidimensional vectors representing the items. As shown in previous chapter, one

of the possible approaches for doing this is by calculating the cosine between these

vectors [8], and is the approach that will be considered for the scope of this thesis.

Let us suppose that two items, say I1 and I2 in ℝC, where M is the number of

users. This work adopted the cosine function to compute the similarity between

these two items. Such similarity is than calculated as follow:

DBD
PUC-Rio - Certificação Digital Nº 1122198/CA

43

345467849: QR, Q; = cos ∠ QR, Q; = 	 ST,SM
ST 	. SM

,

where ∠, ⟨ .,.⟩ and ||.|| represents, respectively, the angle between the two vectors,

the usual inner product in ℝC and the Euclidian vector norm.

Having calculated the similarity between a specific item and all others, one

can then obtain the items that are most similar to one another, and thus, create an

item-item recommendation that takes into account the feedback from users.

However, it is important to remember that for each piece of feedback received, for

example, for each accessed item, the similarity between this and the other items can

change, and hence the similarity between the current item and all the others in the

vector must be recalculated.

In this scenario, considering an environment with millions of users and

millions of items it would be necessary, for each piece of feedback received, to

recalculate the cosine between two vectors with millions of dimensions to ensure the

similarity graph is updated in real-time. This is necessary because with each

feedback, one of the vectors’ coordinate changes, which in turn changes the cosine

value and the similarity between this vector and all other item vectors.

As an illustration consider a video website with N different videos (items), and

M unique viewers (users). This information can be represented by a M ×N matrix F

in which items are represented as columns and users as rows. This matrix can be

used to track feedback, i.e., users who have demonstrated an interest in the items.

Whenever there is a new entry, the matrix must be updated and the similarity graph

recalculated. This recalculation is necessary because when a matrix value changes,

one of dimensions of the item vector also changes, so the cosine between this vector

and the others may be different. This difference changes the similarity between two

items, and, consequently, can modify the similarity ranking between one item

against the others. Figure 8 depicts a concrete case where user U3 plays video I3. In

this case element UVW,SW of the feedback matrix must be updated, and all item pairs I3

: I1, I3 : I2, ..., I3 : In must have their similarity recalculated as shown. For a model

with 4 million items, this means 3,999,999 similarity calculations every time an item

is viewed.

DBD
PUC-Rio - Certificação Digital Nº 1122198/CA

44

Figure 8 - Similarity recalculation process for a single piece of feedback

When using binary feedback, it is possible to avoid the entire recalculation

only by checking if the same dimension of the other vectors has been already set. If

it is not set, the recalculation is not necessary, since the cosine will not change.

Consequently, the average complexity is much better than the worst case complexity

for binary feedbacks. However, for a large number of users and items, perform a

real-time similarity calculation in a practical scenario still being a challenge in terms

of computing power.

Another challenge associated with item-item recommendation is the variation

in item relevance over time, that is, the introduction of temporal dynamics [37]. In

the real world, the perception and popularity of an item is constantly changing as

new items are introduced. Similarly, user preferences evolve. Thus, the system must

take into account temporal effects in mapping the dynamic and variable nature of

the interactions between users and items.

DBD
PUC-Rio - Certificação Digital Nº 1122198/CA

45

This is even more critical when the interest over items is very volatile. To

illustrate such volatility, Figure 9 below shows the number of video views of 5

different news videos from the most important and popular news program in Brazil,

the Jornal Nacional, from TV Globo. All videos are from same program edition,

and were published in the same day and around the same hour, during the broadcast

of the program on TV.

Figure 9 - Video views from 5 news videos from the Jornal Nacional

As expected, there is a spike in audience in the first hours after publication,

however, the content almost become irrelevant to users after few days, since past

news might have very low interest for the most part of viewers. So, in most cases,

recommend news from days, months or years in the past could not be interesting for

the users.

To tackle this part problem in practice, it is possible to associate a lifetime

with each feedback, item, and user, so that the values of each dimension of the vector

representing the item can be adjusted according to the temporal variation. Thus, a

positive feedback could become neutral over time, given that this feedback does not

necessarily represent current user behavior, or even given that this item is no longer

relevant in the context.

Considering all aspects, a theoretical model to obtain item-item

recommendations could be implemented by structuring the users and items in a two-

dimensional array containing the feedback, and by calculating the cosine between

vectors of items to obtain the similarity graph between items. Moreover, considering

the temporal dynamics, which in the case of content providers, especially breaking

news, is essential, we would need a third index in this array to define a life span for

each piece of feedback or group thereof.

DBD
PUC-Rio - Certificação Digital Nº 1122198/CA

46

Again, the major challenge to implement such theoretical model for large scale

applications, such as major video services as YouTube, is how to manipulate very

large datasets. This becomes even more complex when the speed of similarity graph

updating is business critical, for example, in breaking news portals. In those cases,

the manipulation of large datasets must be done in near real-time, since only the

usage o temporal dynamics could be enough the provide fresh and relevant news

recommendations.

Since this real-time computation is not critical for YouTube service, they

implemented a batch-oriented pre-computation approach rather than online

calculation of recommendations. This has the advantages of allowing the

recommendation generation stage access to large amounts of data with ample

amounts of CPU resources while at the same time allowing the serving of the pre-

generated recommendations to be extremely low latency. The most significant

downside of this approach is the delay between generating and serving a particular

recommendation data set [57].

Netflix also relies on offline computation to generate its video

recommendations [58]. However, as [58] clearly states, offline results can easily

grow stale between updates because the most recent data is not incorporated. In order

to consider the most recent data, Netflix implemented a combination of offline

computation with real-time data streams, also using cloud computing platforms.

However, there are no details about how this hybrid architecture was implemented

and what information is considered in the online computation, and, most important,

how it was designed to scale to millions of users and thousands of items.

Furthermore, Netflix content tends to be much less volatile then breaking news

content, being much less sensitive to temporal dynamics. In this scenario, the online

computation is used much more as a refinement of the offline models, which could

not be enough for more dynamic environments. Another important reminder is that

despite the large number of active users, and, consequently volume of feedback data,

Netflix has a much more limited catalog of items when compared to YouTube, for

example, which definitely reduces overall complexity of collaborative filtering, for

example.

This thesis focus is a scenario that is similar to YouTube and Netflix, however,

with characteristics that aren’t present in neither services. Very large portals such

DBD
PUC-Rio - Certificação Digital Nº 1122198/CA

47

Globo.com, CNN, BBC, among others usually have very large number of users such

YouTube and Netflix, and catalogs with millions of objects, such YouTube,

however, their temporal dynamics needs are much more relevant. Furthermore, the

real-time computation is strategic for services dealing with breaking news, which is

not the case of YouTube and Netflix.

So, this thesis proposes an architecture that could address these services needs,

enabling real-time computation to generate fresh recommendations to large portals

through a collaborative filtering approach. The next chapter describes the

implementation details of such architecture and how cloud computing was used to

enable a large scale processing.

DBD
PUC-Rio - Certificação Digital Nº 1122198/CA

