
 

 

3 Large Scale Video Recommendations 

3.1. Introduction 

The largest online shopping sites today offer millions of items for sale in its catalog. 

By the same way, video portals like YouTube also have dozens of millions of items, 

with thousands of new content being published every day. Since choosing among 

so many options is challenging for consumers, recommender systems have emerged 

in response to this problem, and are now a fundamental component of video 

services like Netflix, YouTube, DailyMotion, etc. The goal of a recommender 

system in this case is to recommend items that are likely to fit the user expectations. 

Today, recommender systems are deployed on hundreds of different sites, serving 

millions of consumers. As discussed previously, one of the earliest and most 

successful recommender technologies is collaborative filtering [11, 12, 13, 14]. 

Collaborative filtering (CF) works by building a database of preferences for items 

by users, and has been very successful in both research and practice. However, there 

remain important research questions in overcoming two fundamental challenges for 

collaborative filtering recommender systems. 

The first challenge is to improve the scalability of the memory-based 

collaborative filtering algorithms. These algorithms are able to search tens of 

thousands of potential neighbors in real-time, but the demands of modern Internet 

systems are to search tens of millions of potential neighbors. Further, existing 

algorithms have performance problems with individual users for whom the site has 

large amounts of information. For instance, if a site is using browsing patterns as 

indications of item preference, it may have thousands of data points for its most 

valuable customers. These “long customer rows” slow down the number of 

neighbors that can be searched per second, further reducing scalability. The second 

challenge is to improve the quality of the recommendations for the consumers. Users 

need recommendations they can trust to help them find items they will like. In some 

ways these two challenges are in conflict, since the less time an algorithm spends 

searching for neighbors, the more scalable it will be, and the worse its quality. For 
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this reason, it is important to treat the two challenges simultaneously so the solutions 

discovered are both useful and practical. 

 

3.2. Item-Item Video Recommendations  

As discussed previously, the idea behind an item-item recommendation engine 

is, for any given item, finding a set of items that is most similar to the item in 

question. Similarity is measured using a combination of input data, generally 

structured in a bi-dimensional matrix with the first dimension representing users and 

the second items. The ultimate goals of an item-item recommendation system are to 

predict how users would rate an item that is not yet rated, and to recommend items 

from the collection. In a video recommendation system, an item-item collaborative 

filtering could be used to provide recommendations in an approach “who liked this 

video might also like these …”. 

With respect to user ratings, recommendation engines may use different types 

of feedback. Ideally, explicit feedback is preferred, with users explicitly indicating 

their preferences. Netflix uses explicit user feedback through star ratings as shown 

in Figure 6, for example, while YouTube uses “thumbs up” and “thumbs down” as 

its explicit feedback, as shown in Figure 7.  

 

Figure 6 - Netflix Star Ratings for explicit feedback 
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Figure 7 - YouTube "Thumbs up" / "Thumbs Down" explicit feedback 

 

However, there are situations where such information is not available. In these 

cases, it is necessary to infer user preferences through implicit feedback [55], which 

indirectly represents a user’s preferences based on his/her behavior. Implicit 

feedback is obtained from user navigation history, the list of products bought, and 

even from the mouse path on specific screens. For videos, this implicit feedback 

could be obtained through the playback duration, video seek (rewind or forward), 

player visibility during the playback and different user interactions with the player 

beyond others [56]. 

After obtaining user feedback, for example, information that a user start 

playing a particular video, the input can be stored in a square matrix representing 

users and items, where, in this case, each element denotes whether an item was 

accessed by a user. Thus, considering each item separately, we have a 

multidimensional vector with each dimension representing a user. Consequently, as 

the number of distinct users in the system increases, the number of dimensions in 

the vector also increases. Typically, large video portals have tens or even hundreds 

of millions of unique visitors per month, which means that their item vectors will 

have a similar number of dimensions. 

Therefore, the problem of obtaining the similarity between two specific items 

can be translated into one of obtaining the similarity between the two 

multidimensional vectors representing the items. As shown in previous chapter, one 

of the possible approaches for doing this is by calculating the cosine between these 

vectors [8], and is the approach that will be considered for the scope of this thesis.  

Let us suppose that two items, say I1 and I2 in ℝC, where M is the number of 

users. This work adopted the cosine function to compute the  similarity between 

these two items. Such similarity is than calculated as follow: 
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where ∠, ⟨ .,.⟩  and ||.|| represents, respectively, the angle between the two vectors, 

the usual inner product in  ℝC and the Euclidian vector norm. 

Having calculated the similarity between a specific item and all others, one 

can then obtain the items that are most similar to one another, and thus, create an 

item-item recommendation that takes into account the feedback from users. 

However, it is important to remember that for each piece of feedback received, for 

example, for each accessed item, the similarity between this and the other items can 

change, and hence the similarity between the current item and all the others in the 

vector must be recalculated. 

In this scenario, considering an environment with millions of users and 

millions of items it would be necessary, for each piece of feedback received, to 

recalculate the cosine between two vectors with millions of dimensions to ensure the 

similarity graph is updated in real-time. This is necessary because with each 

feedback, one of the vectors’ coordinate changes, which in turn changes the cosine 

value and the similarity between this vector and all other item vectors. 

As an illustration consider a video website with N different videos (items), and 

M unique viewers (users). This information can be represented by a M ×N matrix F 

in which items are represented as columns and users as rows. This matrix can be 

used to track feedback, i.e., users who have demonstrated an interest in the items. 

Whenever there is a new entry, the matrix must be updated and the similarity graph 

recalculated. This recalculation is necessary because when a matrix value changes, 

one of dimensions of the item vector also changes, so the cosine between this vector 

and the others may be different. This difference changes the similarity between two 

items, and, consequently, can modify the similarity ranking between one item 

against the others. Figure 8 depicts a concrete case where user U3 plays video I3. In 

this case element UVW,SW of the feedback matrix must be updated, and all item pairs I3 

: I1, I3 : I2, ..., I3 : In must have their similarity recalculated as shown. For a model 

with 4 million items, this means 3,999,999 similarity calculations every time an item 

is viewed.  
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Figure 8 -  Similarity recalculation process for a single piece of feedback 

 

When using binary feedback, it is possible to avoid the entire recalculation 

only by checking if the same dimension of the other vectors has been already set. If 

it is not set, the recalculation is not necessary, since the cosine will not change.  

Consequently, the average complexity is much better than the worst case complexity 

for binary feedbacks. However, for a large number of users and items, perform a 

real-time similarity calculation in a practical scenario still being a challenge in terms 

of computing power. 

Another challenge associated with item-item recommendation is the variation 

in item relevance over time, that is, the introduction of temporal dynamics [37]. In 

the real world, the perception and popularity of an item is constantly changing as 

new items are introduced. Similarly, user preferences evolve. Thus, the system must 

take into account temporal effects in mapping the dynamic and variable nature of 

the interactions between users and items. 
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This is even more critical when the interest over items is very volatile. To 

illustrate such volatility, Figure 9 below shows the number of video views of 5 

different news videos from the most important and popular news program in Brazil, 

the Jornal Nacional, from TV Globo. All videos are from same program edition, 

and were published in the same day and around the same hour, during the broadcast 

of the program on TV. 

 

Figure 9 - Video views from 5 news videos from the Jornal Nacional 

 

As expected, there is a spike in audience in the first hours after publication, 

however, the content almost become irrelevant to users after few days, since past 

news might have very low interest for the most part of viewers. So, in most cases, 

recommend news from days, months or years in the past could not be interesting for 

the users. 

To tackle this part problem in practice, it is possible to associate a lifetime 

with each feedback, item, and user, so that the values of each dimension of the vector 

representing the item can be adjusted according to the temporal variation. Thus, a 

positive feedback could become neutral over time, given that this feedback does not 

necessarily represent current user behavior, or even given that this item is no longer 

relevant in the context. 

Considering all aspects, a theoretical model to obtain item-item 

recommendations could be implemented by structuring the users and items in a two-

dimensional array containing the feedback, and by calculating the cosine between 

vectors of items to obtain the similarity graph between items. Moreover, considering 

the temporal dynamics, which in the case of content providers, especially breaking 

news, is essential, we would need a third index in this array to define a life span for 

each piece of feedback or group thereof. 

DBD
PUC-Rio - Certificação Digital Nº 1122198/CA



 

 

46 

Again, the major challenge to implement such theoretical model for large scale 

applications, such as major video services as YouTube, is how to manipulate very 

large datasets. This becomes even more complex when the speed of similarity graph 

updating is business critical, for example, in breaking news portals. In those cases, 

the manipulation of large datasets must be done in near real-time, since only the 

usage o temporal dynamics could be enough the provide fresh and relevant news 

recommendations. 

Since this real-time computation is not critical for YouTube service, they 

implemented a batch-oriented pre-computation approach rather than online 

calculation of recommendations. This has the advantages of allowing the 

recommendation generation stage access to large amounts of data with ample 

amounts of CPU resources while at the same time allowing the serving of the pre-

generated recommendations to be extremely low latency. The most significant 

downside of this approach is the delay between generating and serving a particular 

recommendation data set [57]. 

Netflix also relies on offline computation to generate its video 

recommendations [58]. However, as [58] clearly states, offline results can easily 

grow stale between updates because the most recent data is not incorporated. In order 

to consider the most recent data, Netflix implemented a combination of offline 

computation with real-time data streams, also using cloud computing platforms. 

However, there are no details about how this hybrid architecture was implemented 

and what information is considered in the online computation, and, most important, 

how it was designed to scale to millions of users and thousands of items. 

Furthermore, Netflix content tends to be much less volatile then breaking news 

content, being much less sensitive to temporal dynamics. In this scenario, the online 

computation is used much more as a refinement of the offline models, which could 

not be enough for more dynamic environments. Another important reminder is that 

despite the large number of active users, and, consequently volume of feedback data, 

Netflix has a much more limited catalog of items when compared to YouTube, for 

example, which definitely reduces overall complexity of collaborative filtering, for 

example. 

This thesis focus is a scenario that is similar to YouTube and Netflix, however, 

with characteristics that aren’t present in neither services. Very large portals such 
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Globo.com, CNN, BBC, among others usually have very large number of users such 

YouTube and Netflix, and catalogs with millions of objects, such YouTube, 

however, their temporal dynamics needs are much more relevant. Furthermore, the 

real-time computation is strategic for services dealing with breaking news, which is 

not the case of YouTube and Netflix. 

So, this thesis proposes an architecture that could address these services needs, 

enabling real-time computation to generate fresh recommendations to large portals 

through a collaborative filtering approach. The next chapter describes the 

implementation details of such architecture and how cloud computing was used to 

enable a large scale processing.
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