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Prof. Carlos Tomei
Departamento de Matemática – PUC-Rio
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Abstract

Telles, Márcio da Silva Passos; Saldanha, Nicolau Corção. Some
examples of asymptotic combinatorial behavior, zero-one and
convergence results on random hypergraphs. Rio de Janeiro, 2013.
64p. Tese de Doutorado — Departamento de Matemática, Pontif́ıcia Uni-
versidade Católica do Rio de Janeiro.

Random graphs (and more generally hypergraphs) have been extensively

studied, including their first order logic. In this thesis we focus on certain

specific aspects of this vast theory. We consider the binomial model Hd+1(n, p)

of the random (d + 1)-uniform hypergraph on n vertices, where each edge is

present, independently of one another, with probability p = p(n). We are

particularly interested in the range p(n) ∼ C log(n)/nd, after the double

jump and near connectivity. We prove several zero-one, and, more generally,

convergence results and obtain combinatorial applications of some of them.

Keywords
Random Structures; Graphs; Hypergraphs; First Order Logic;

Zero-One Laws;

DBD
PUC-Rio - Certificação Digital Nº 0821520/CA



Resumo

Telles, Márcio da Silva Passos; Saldanha, Nicolau Corção. Alguns exem-
plos de comportamento assintótico e resultados de convergência
de tipo zero-um em hipergrafos aleatórios. Rio de Janeiro, 2013.
64p. Tese de Doutorado — Departamento de Matemática, Pontif́ıcia Uni-
versidade Católica do Rio de Janeiro.

Grafos aleatórios (ou, mais geralmente, hipergrafos) têm sido estudados

extensamente, inclusive sua lógica de primeira ordem. Nesta tese focamos em

certos aspectos desta vasta teoria. Consideramos o modelo binomial Hd+1(n, p)

do hipergrafo (d+ 1)-uniforme aleatório com n vértices, onde cada aresta está

presente, independentemente das demais, com probabilidade p(n). Estamos

particularmente interessados na faixa p(n) ∼ C log(n)/nd, após o double jump

e perto da conexidade. Demonstramos alguns resultados de tipo zero-um e,

mais geralmente, de convergência e obtemos aplicações combinatórias de alguns

deles.

Palavras–chave
Estruturas Aleatórias; Grafos; Hipergrafos; Lógica de Primeira

Ordem; Leis de Zero-Um;
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1
Introduction

It has now been more than fifty years since Erdős and Rényi laid the

foundations for the study of random graphs on their seminal paper On the

evolution of random graphs [1], where they considered the binomial random

graph model G(n, p). This consists of a graph on n vertices where each of

the potential
(
n
2

)
edges is present with probability p, all these events being

independent of each other. Many interesting asymptotic questions arise when

n tends to ∞ and we let p depend on n.

Among other results, they showed that many properties of graphs exhibit

a threshold behavior, meaning that the probability that the property holds on

G(n, p) turns from near 0 to near 1 in a narrow range of the edge probability

p. More concretely, given a property P of graphs, in many cases there is a

threshold function p : N → [0, 1] such that, as n → ∞, the probability that

G(n, p̃) satisfies P tends to 0 for all p̃� p and tends to 1 for all p̃� p. Erdős

and Rényi showed, for example, that the threshold for connectivity is p = logn
n

.

They also showed that there is a profound change in the component structure of

G(n, p) for p around 1
n
, where one of its many connected components suddenly

becomes dramatically larger than all others, a phenomenon mainly understood

today as a phase transition. The range of p where this occur is called the Double

Jump and has received enormous attention from researchers since then.

The above threshold behaviors suggest that one could expect to describe

some convergence results, where the probabilities of all properties in a certain

class converge to known values as n→∞. Among the first convergence results

there are the zero-one laws, where all properties of graphs expressible by a

first order formula (called elementary properties) converge to 0 or to 1. This

happens, for example, if p is independent of n. Many other instances of zero-

one laws for random graphs were obtained by Joel Spencer in the book The

Strange Logic of Random Graphs [2]. There he shows that zero-one laws hold

if p lies between a number of “critical” functions. More concretely, if p satisfies

one of the following conditions

(a) p� n−2

(b) n−
1+l
l � p� n−

2+l
1+l for some l ∈ N
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Asymptotic Combinatorial Behavior on Random Hypergraphs 9

(c) n−1−ε � p� n−1 for all ε > 0

(d) n−1 � p� (log n)n−1

(e) (log n)n−1 � p� n−1+ε for all ε > 0

then a zero-one law holds.

Note that clause 2 is, in fact, a scheme of clauses. Note also that 1 can

be viewed as a special case of 2. There are functions p� n−1+ε not considered

by any of the above conditions. Such “gaps” occur an infinite number of times

near the critic functions in the scheme 2 and two more times: one between

clauses 3 and 4 and the other between clauses 4 and 5. Spencer shows that, for

some functions p conveniently near that “critic” functions in 2 and the critic

functions n−1 and logn
n

, corresponding to the gaps 3− 4 and 4− 5 respectively,

the probabilities of all elementary properties converge to constants c ∈ [0, 1]

as n→∞. This situation, more general than that of a zero-one law, is called

a convergence law.

One sees immediately that the possibility that an edge probability func-

tion oscillates infinitely often between two different values can be an obstruc-

tion to getting convergence laws. With this difficulty in mind, we consider

the edge probability functions p : N → [0, 1] that belong to Hardy’s class

of logarithmo-exponential functions. This class is entirely made of eventually

monotone functions, avoiding the above mentioned problem, and has the ad-

ditional convenience of being closed by elementary algebraic operations and

compositions that can involve logarithms and exponentials. All thresholds of

natural properties of graphs seem to belong in Hardy’s class.

Generally speaking, our work implies that, once one restricts the edge

probabilities to functions in Hardy’s class, there are no further “gaps”: all

logarithmo-exponential edge probabilities p� n−1+ε are convergence laws. The

arguments in Spencer’s book are sufficient for getting most of these convergence

laws, except for those in the window p ∼ C logn
n

, C > 0, where just the value

C = 1 is discussed.

One of our main interests lies in the completion of the discussion

of the convergence laws in the window p ∼ C logn
n

for other values of C

and generalizations of the beautiful arguments in Spencer’s book to random

uniform hypergraphs. We will see that this window hides an infinite collection

of zero-one and convergence laws and that those can be presented in a simple

organized fashion. We also get simple axiomatizations of the almost sure

theories and describe all elementary types of the countable models of these

theories.
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Asymptotic Combinatorial Behavior on Random Hypergraphs 10

Convergence laws have a deep connection with some elementary concepts

of logic. More precisely, zero-one laws occur when the class Tp of almost

sure elementary properties is complete and convergence laws occur when this

“almost sure theory” is, in a sense, almost complete. Some everyday results

in first-order logic imply that when all countably infinite models of Tp are

elementarily equivalent (that is, satisfy the same elementary properties), Tp

is complete. This is obviously the case if there is, apart from isomorphism,

only one such model: in this case, we say that Tp is ℵ0-categorical. We will

face situations where the countable models of Tp are, indeed, unique up to

isomorphism. In other cases, the almost sure theory is still complete but the

countable models are not unique: in the instances of the latter situation, the

countable models are not far from being uniquely determined and, in particular,

lend themselves to an exhaustive characterization. Finally, there are cases

where Tp is not complete but we still have convergence laws: in these cases,

the almost sure theories are not far from being complete, and we still manage

to classify their countable models.

Along the way, we describe some combinatorial aspects of the component

structure of the random hypergraph in the window p ∼ C logn
n

, including some

estimates of the size of the complement of its largest connected component.

As a consequence, we get some elementary approximations of non-elementary

events that work for probability edge functions in Hardy’s class. The phase

transition occurring in the Double Jump p ∼ Cn−1 has recently been seen

to hold, in this more general context of random (d+ 1)-uniform hypergraphs,

in the window p ∼ Cn−d by Schmidt-Pruzan and Shamir in [3]. We do not

discuss convergence laws in this window for d > 1 as Spencer successfully does

for d = 1, although this seems an interesting question worthy of clarification

in the future.
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2
Preliminaires

2.1
The model Gd+1(n, p)

We consider the binomial model Gd+1(n, p) of random (d + 1)-uniform

hypergraphs on n vertices with probability p ∈ [0, 1], that is to say, the finite

probability space on the set of all hypergraphs on n labelled vertices where

each edge is a set of cardinality d + 1 and if H is such a hypergraph with k

edges then one has

P[H] = pk(1− p)(
n
d+1)−k.

Another useful characterization of the same probability space is to insist

that each of the potential
(
n
d+1

)
edges be present in Gd+1(n, p) with probability

p, each of these events being independent of each other. We will, more often,

prefer the latter because it is more convenient in applications.

In the literature, the reader will find that the notations Gd+1(n, p),

Hd+1(n, p) and even some others also stand for Gd+1(n, p). Our choice reflects

our mere personal taste.

Our interest lies on the asymptotic behavior of Gd+1(n, p) when n→∞
and p = p(n) is a function of n. More specifically, a property of hypergraphs

is a class of hypergraphs closed by hypergraph isomorphism. Each property P

gives rise to a sequence

P(P ) = P[P ](n, p) := P[Gd+1(n, p(n)) |= P ]

and it is the asymptotic behavior of these sequences we shall be interested in:

when they converge; if so, what the limits are and so on.

A property P is said to hold asymptoticaly almost surely (or simply almost

surely) if P[P ]→ 1. In this case we say simply that P holds a.a.s.. A property

P is said to hold almost never if its negation ¬P holds almost surely. Very

often, it is the case that a property P turns from holding almost never to

holding almost surely in a narrow range of the edge probability p.
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Asymptotic Combinatorial Behavior on Random Hypergraphs 12

(2.1) Definition. We say p̃ : N → [0, 1] is a threshold function (or simply a

threshold) for P if both the following conditions hold:

(a) If p� p̃ then P holds a.a.s. in Gd+1(n, p).

(b) If p� p̃ then ¬P holds a.a.s. in Gd+1(n, p).

Above and in all that follows, for eventually positive functions f, g : N→
R, both expressions f � g and f = o(g) mean limn→∞

f(n)
g(n)

= 0.

Note that thresholds, when they exist, are not uniquely defined. For

example, if p̃ meets the requirements of being a threshold for P then all

functions c · p̃, with c ∈ R∗+, also do. Therefore, strictly speaking, it would

be more correct to talk about “representatives” of the threshold. However, as

distinctions of this nature usually play no role in what follows, we shall not

bother the reader with them.

As far as thresholds are concerned, the following is a generalization of a

classical result of Erdős, Rényi and Bollobás, stated and proved by Vantsyan

in [4].

(2.2) Theorem. Fix a finite (d+ 1)-uniform hypergraph H and let

ρ := max

{
|E(H̃)|
|V (H̃)|

| H̃ ⊆ H,E(H̃) > 0

}
.

Then the function p(n) = n−
1
ρ is a threshold for the property of contain-

ment of H as a sub-hypergraph.

That is to say, n−
1
ρ is a threshold for the appearance of small sub-

hypergraphs with maximal density ρ. We will need this later.

Among similar results, we will see that p(n) = logn
nd

is a threshold for

Gd+1(n, p) being connected, apart from getting thresholds for other properties.

2.2
Logarithmico-Exponential Functions

Generally speaking, our results relate to convergence. That is, showing

that for all functions p and properties P in certain specified classes, the limit

lim
n→∞

P(P )(n, p)

exists. Moreover, one can usually get a nice description of these limits.

One obvious obstruction to getting such results is the possibility that the

function p can oscillate between two different values, so that the corresponding

probabilities also do. This would, obviously, rule out convergence.
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Asymptotic Combinatorial Behavior on Random Hypergraphs 13

To overcome this difficulty, one can restrict the possible functions p to a

class entirely made of eventually monotone functions. One natural such choice

is Hardy’s class of logarithmico-exponential functions, or L-functions for short,

consisting of the eventually defined real-valued functions defined by a finite

combination of the ordinary algebraic symbols and the functional symbols

log(. . .) and exp(. . .) on the variable n. To avoid trivialities such as

e
√
−n2 − e−

√
−n2

2

we require that, in all “stages of construction”, the functions take only real

values.

By induction on the complexity of L-functions, one can easily show that

this class meets our requirement and even more. We state the following and

refer the interested reader to Hardy’s book Orders of Infinity [5] for a proof.

(2.3) Theorem. Any L-function is eventually continuous, of constant sign,

and monotonic, and, as n → +∞, converges to a definite limit or tends to

±∞. In particular, if f and g are eventually positive L-functions, exactly one

of the following relations holds.

(a) f � g

(b) f � g

(c) f ∼ c · g, for some constant c ∈ R.

Thresholds of natural properties of graphs and hypergraphs appear to

have representatives that are L-functions. (Stating and deciding a formal

counterpart of that claim seems to be an interesting problem) This makes the

choice of L-functions in the context of random hypergraphs a rather natural

one.

2.3
First Order Logic of Hypergraphs

Having narrowed the class of possible edge probability functions, we now

turn to a similar procedure on the class of properties of hypergraphs.

The first order logic of (d+ 1)-uniform hypergraphs FO is the relational

logic with language {σ}, where σ is a (d+1)-ary predicate. The semantics of FO
is given by quantification over vertices and giving the formula σ(x0, x1, . . . , xd)

the interpretation “{x0, x1, . . . , xd} is an edge”.

We say a property P of (d + 1)-uniform hypergraphs is elementary if it

can be represented by a formula in FO. In this case, we write P ∈ FO and,
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Asymptotic Combinatorial Behavior on Random Hypergraphs 14

when no possibility of confusion arises, make no notational distinction between

P and the first order formula defining it.

A first order theory is simply a subclass C ⊆ FO, that is, a class of

elementary properties.

Fix a first order theory C ⊆ FO and a property P ∈ FO. We say P is a

semantic consequence of C, and write C |= P , if P is satisfied in all hypergraphs

that satisfy all of C, that is to say, if H |= C implies H |= P . One can define

a deductive system in which all derivations are finite sequences of formulae in

FO, giving rise to the concept of P being a syntatic consequence of C, meaning

that some FO-formula defining P is the last term of a derivation that only

uses formulae in C as axioms.

One piece of information in Gödel’s Completeness Theorem is the fact

that one can pick such a deductive system in a suitable fashion so as to make

the concepts of semantic and syntatic consequences identical. As derivations

are finite sequences of formulae, the following Compactness Result is obvious.

(2.4) Proposition. If P is a semantic consequence of C then it is a semantic

consequence of a finite subclass of C.

In particular, if every finite subclass of C is consistent then C is consist-

ent.

The “in particular” part comes from substitution of P by any contradict-

ory property. A careful analysis of the argument on the proof of Gödel’s Com-

pleteness Theorem shows the Downward Löwenhein-Skolem Theorem, that if

C is a consistent theory (that is, satisfied by some hypergraph) then there is a

hypergraph on a countable number of vertices satisfying C.
In spite of our particular interest in elementary properties, our interest

is by no means exclusive. Rather we will, at times, discuss relations among

elementary properties and provably non-elementary ones. As a matter of

example and also for future reference, we define the events Dl.

In what follows, recall that the incidence graph G(H) of a hypergraph H

is a bipartite graph with V (H) on one side and E(H) on the other and such

that, for all v ∈ V (H) and e ∈ E(H), there is an edge connecting v and e

in G(H) if, and only if, v ∈ e in H. We say a hypergraph is Berge-acyclic is

its incidence graph has no cycles. From now on we shall refer to Berge-acyclic

hypergraphs simply as acyclic hypergraphs.

(2.5) Definition. A butterfly is a connected acyclic uniform hypergraph. The

order of a finite butterfly is its number of edges.

Fix l ∈ N.
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Asymptotic Combinatorial Behavior on Random Hypergraphs 15

(2.6) Definition. Let a hypergraph satisfy Dl if the complement of a connec-

ted component of maximal size is a disjoint union of finite butterflies, all of

them of order less then l.

So D1 is the event that the hypergraph is a union of a component and

some isolated points. For convenience we adopt the convention that D0 is the

event of being connected.

In the case d = 1 of graphs, it is a well known result of Erdős and Rényi

that the property D0 of being connected, in spite of not being an elementary

one, is asymptotically equivalent to the absence of isolated vertices, obviously

an elementary property. The events Dl are generalizations of D0 to other values

of l and d. As one should naturally expect, these generalizations give rise to

concepts that are still non-elementary. We shall see that, in analogy with Erdős

and Rényi’s result, the events Dl are also asymptotically elementary.

The proof that Dl /∈ FO exemplifies a nice use of Compactness.

(2.7) Proposition. For all l ∈ N, Dl /∈ FO.

Proof. Fix l and suppose, for a contradiction, that Dl ∈ FO. We use

compactness.

Let {A,B} be a cut in a finite hypergraph. The norm of {A,B} is the

number min{|A|, |B|}. Call a cut bad if none of the two sides of the cut is a

disjoint union of butterflies of order less then l. So Dl is the event that there

are no bad cuts.

For each m ∈ N, let Em be the event that all bad cuts have norm at least

m. By explicitly enumerating and excluding all bad cuts of order < m, one

sees that Em ∈ FO.

Consider the theory T = {E0, E1, E2, . . .} ∪ {¬Dl}. As there are hyper-

graphs that are a disjoint union of two large butterflies, one sees at once that

every finite sub-theory of T is consistent. On the other hand, it is obvious that

T is itself inconsistent, in contradiction with compactness.

An analysis of the above argument shows that, although Dl is not

elementary, it is the class of hypergraphs satisfying all properties in a first

order theory, namely the theory T = {E0, E1, . . .}. We say a property P is

axiomatizable if there is a first order theory T such that, for all hypergraphs

H, one has H |= P if, and only if H |= σ for all σ ∈ T . Of course, if there is

such a finite T , P is elementary. So Dl is axiomatizable but not elementary.

Some properties are beyond even the expressible power of first order

theories. Further insight on the proof of the above proposition shows that that

is the case of the negations ¬Dl.
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Asymptotic Combinatorial Behavior on Random Hypergraphs 16

(2.8) Proposition. For all l ∈ N, ¬Dl is not axiomatizable.

Proof. As a contradiction, suppose the theory T axiomatizes Dl. Then the

theory

T ∪ {E0, E1, . . .}

is inconsistent. But, as we have seen above, every finite subtheory of T ∪
{E0, E1, . . .} is consistent, in contradiction with compactness.

Still, as the reader can easily verify, if P is any property, then the property

of being finite and satisfy P is axiomatizable.

2.4
Zero-One Laws and Complete Theories

The above observations will be useful in obtaining the following conver-

gence results involving all properties in FO.

(2.9) Definition. We say a function p : N→ [0, 1] is a zero-one law if, for all

P ∈ FO, one has

lim
n→∞

P(P )(n, p) ∈ {0, 1}.

Above we mean that for every P ∈ FO the limit exists and is either zero

or one.

There is a close connection between zero-one laws and the concept of

completeness. We say a theory C is complete if, for every P ∈ FO, exactly one

of C |= P or C |= ¬P holds.

Given p : N→ [0, 1], the almost sure theory of p is defined by

Tp := {P ∈ FO|P(P )(n, p)→ 1}.

So Tp is the class of almost sure elementary properties of Gd+1(n, p). Note

that, as a contradiction never holds, Tp is always consistent. Moreover as, for

every m ∈ N, the property of having at least m vertices is elementary and

holds almost surely, Tp has no finite models.

The connection between completeness and zero-one laws is given by the

following.

(2.10) Theorem. The function p is a zero-one law if, and only if, Tp is

complete.
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PUC-Rio - Certificação Digital Nº 0821520/CA



Asymptotic Combinatorial Behavior on Random Hypergraphs 17

Proof. Suppose Tp is complete and fix P ∈ FO. As Tp is complete, either P

or ¬P is a semantic consequence of Tp. If Tp |= P , by compactness, there is a

finite set {P1, P2 . . . , Pk} ⊆ Tp such that {P1, P2 . . . , Pk} |= P . Therefore

P(P1 ∧ P2 · · · ∧ Pk) ≤ P(P ).

As P(P1∧P2 · · · ∧Pk)→ 1 we have also P(P )→ 1. Similarly, if Tp |= ¬P
one has P(¬P ) → 1, so that P(P ) → 0. As P was arbitrary, p is a zero-one

law.

Conversely, if p is a zero-one law then, for any P ∈ FO, we have either

P ∈ Tp or ¬P ∈ Tp. One cannot have both, as Tp is consistent. So Tp is

complete.

As Tp is consistent and has no finite models, Gödel’s Completeness The-

orem and Löwenhein-Skolem give that the requirement of Tp being complete

is equivalent to asking that all countable models of Tp satisfy exactly the same

first-order properties, a situation described in Logic by saying that all count-

able models are elementarily equivalent. One obvious sufficient condition is that

Tp be ℵ0-categorical, that is, that Tp has, apart from isomorphism, a unique

countable model. We shall see several examples where Tp is ℵ0-categorical and

other examples where the countable models of Tp are elementarily equivalent

but not necessarily isomorphic.

We summarize the above observations in the following corollary, more

suitable for our applications.

(2.11) Corollary. A function p is a zero-one law if, and only if, all models

of the almost sure theory Tp are elementarily equivalent. In particular, if Tp is

ℵ0-categorical, then p is a zero-one law.

Proof. It suffices to show that Tp is complete if, and only if, all countable

models of Tp are elementarily equivalent.

Suppose Tp is complete and let A be an elementary property. Then either

Tp |= A or Tp |= ¬A. In the former case, all countable models of Tp satisfy A,

and, in the latter, all such models satisfy ¬A. As A is arbitrary, all countable

models of Tp are elementarily equivalent.

Now suppose all countable models of Tp are elementarily equivalent and

let A be an elementary property. Then either all countable models of Tp satisfy

A or all such models satisfy ¬A. Suppose the former. We claim that, in this

case, Tp |= A. For, if that were not the case, the theory Tp ∪ {¬A} would be

consistent and, by the Downward Löwenhein-Skolem Theorem, would have a
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countable model, a contradiction. Therefore, we must have Tp |= A. Changing

the roles of A and ¬A gives the latter.

For the “in particular”, note that if Tp is ℵ0-categorical, all its countable

models are elementarily equivalent.

Uses of the above result require the ability to recognize when any two

models H1 and H2 of Tp are elementarily equivalent. This is, usually, a simple

matter in case H1 and H2 are isomorphic. It is convenient to have at hand an

instrument suitable to detecting when two structures of a first-order theory

are elementarily equivalent regardless of being isomorphic.

Next, we briefly discuss the definition and some results on the Ehren-

feucht Game, which is a classic example of such an instrument.

2.5
The Ehrenfeucht Game

This game has two players, called Spoiler and Duplicator, and two

uniform hypergraphs H1 and H2 conventionally on disjoint sets of vertices.

These hypergraphs are known to both players. The game has a certain number

k of rounds which is again known to both players.

In each round, Spoiler selects one vertex not previously selected in either

hypergraph and then Duplicator selects another vertex not previously selected

in the other hypergraph. At the end of the k-th round, the vertices x1, . . . , xk

have been chosen on H1 and y1, . . . , yk on H2. Duplicator wins if, for all

{i0, i1, . . . , id} ⊆ {1, 2 . . . , k}, {xi0 , . . . , xid} is an edge in H1 if and only if

the corresponding {yi0 , . . . , yid} is an edge in H2. Spoiler wins if Duplicator

does not. We denote the above described game by EHF(H1, H2; k).

As a technical point, the above description of the game works only if

k ≤ min{|H1| , |H2|}. If that is not the case, we adopt the convention that

Duplicator wins the game if, and only if, H1 and H2 are isomorphic.

The connection of the Ehrenfeucht Game to first order logic is a classic in

logic and was given for the first time by R. Fräıssé in his PhD thesis in the more

general context of purely relational structures with finite predicate symbols.

A proof in the particular case of graphs can be found in Joel Spencer’s book

The Strange Logic of Random Graphs [2], whose argument applies, mutatis

mutandis to uniform hypergraphs.

(2.12) Proposition. The hypergraphs H1 and H2 are elementarily equivalent

if, and only if, for all k ∈ N, Duplicator has a winning strategy for the game

EHR(H1, H2; k).
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Now it is easy to see the connection of the game to zero-one laws.

(2.13) Corollary. If for all countable models H1 and H2 of Tp and all k ∈ N
Duplicator has a winning strategy for EHR(H1, H2; k) then p is a zero-one law.

When Tp is ℵ0-categorical, the isomorphisms between its countable

models give a winning strategy for Duplicator. There are other situations when

describing a winning strategy is not that easy.

Consider, for example, with d = 1, an infinite tree T1 all of whose vertices

have 3 neighbors. Let also T2 = T1 t T1 be a disjoin union of two copies of

T1. Then T1 and T2 are not isomorphic, but one could naturally guess that

Duplicator has a winning strategy for EHR(T1, T2; k) for any k: Spoiler will

pick two vertices in T2 and try to show that they lie in different connected

components while the corresponding vertices Duplicator chose in T1 lie in the

same. But Duplicator can make it an impossible task by choosing his two

vertices suitably far from each other. The next section will turn this idea, and

some convenient generalizations, into a precise strategy for Duplicator.

2.6
Some winning strategies for Duplicator

Now we describe some situations when there is a winning strategy for

Duplicator without H1 and H2 being necessarily isomorphic. All propositions

we state below are analogous to propositions in Spencer’s book The Strange

Logic of Random Graphs. There, all results are stated and proved for graphs

but, again, all arguments apply, mutatis mutandis, to the case of uniform

hypergraphs.

In what follows, if H is a (d + 1)-uniform hypergraph and x ∈ H, the

a-neighborhood of x is the restriction of H to the set of vertices at distance

at most a from x. If x1, . . . , xu ∈ H, the a-picture of x1, . . . , xu is the union

of the a-neighborhoods of the xi. Let x1, . . . , xu ∈ H1 and y1, . . . , yu ∈ H2.

Their a-pictures are called the same if there is an isomorphism between the

a-pictures that sends xi to yi for all i ∈ {1, . . . , u}. Also, ρ(x, y) is the distance

from x to y.

(2.14) Proposition. Set a = 3k−1
2

. Suppose H1 and H2 have vertex subsets

S1 ⊆ H1 and S2 ⊆ H2 with the following properties:

(a) The restrictions of H1 to S1 and H2 to S2 are isomorphic and this

isomorphism can be extended to one between the a-neighborhoods of S1

and S2.
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(b) Let a′ ≤ a. Let y ∈ H2 with ρ(y, s2) > 2a′ + 1 for all s2 ∈ S2. Let

x1, . . . , xk−1 ∈ H1. Then there is an x ∈ H1 with x, y having the same

a′-neighborhoods and such that ρ(x, xi) > 2d′ + 1 for all 1 ≤ i ≤ k − 1

and ρ(x, s1) > 2a′ + 1 for all s1 ∈ S1.

(c) Let a′ ≤ a. Let x ∈ H1 with ρ(x, s1) > 2a′ + 1 for all s1 ∈ S1. Let

y1, . . . , yk−1 ∈ H2. Then there is an y ∈ H2 with x, y having the same

a′-neighborhoods and such that ρ(y, yi) > 2a′ + 1 for all 1 ≤ i ≤ k − 1

and ρ(y, s2) > 2a′ + 1 for all s2 ∈ S2.

Then Duplicator has a winning strategy for EHR(H1, H2; k).

Proof. Set a0 = 0 and ak+1 = 3ak + 1 so that ak = 3k−1
2

= a.

First Duplicator imagines all vertices in S1 ∪ S2 to be marked. Then she

will, with s round remaining, try to make the as pictures of the marked vertices

the same in the two hypergraphs. If she succeeds, at the end the 0-pictures will

be the same and she has won. But is that possible? By induction, we see the

answer is affirmative:

For s = k, that is trivially possible and for s = k − 1, the hypothesis

guarantee that the set of pictures of individual vertices is the same in both

hypergraphs.

Now suppose Duplicator could hold to her strategy until s = k − j, that

x1, . . . , xj have been marked in H1 and that corresponding y1, . . . , yj have been

marked in H2. For convenience, set A := as−1 and A′ := as = 3A + 1. Then

the induction hypotheses is that the A′-pictures of x1, . . . , xj and y1, . . . , yj are

the same.

By symmetry, there is no loss of generality in supposing Spoiler plays a

yj+1 ∈ H2. We distinguish two cases:

(Inside) We say Spoiler played inside if yj+1 is at distance at most

2A+ 1 of some previous yl. If that is the case, the A-picture of y1, . . . , yj, yj+1

is contained in the A′-picture of y1, . . . , yj and, therefore, is isomorphic to

the A-picture of x1, . . . , xj. Duplicator then selects a xj+1 according to that

isomorphism.

(Outside) We say spoiler played outside if yj+1 is at distance at least

2A+1 of any previous yl. If that is the case, the A-picture of yj+1 is a separate

component in the A-picture of y1, . . . , yj, yj+1. By condition 2, Duplicator can

play a xj+1 also in a separate component of the new picture.

The fact that the Game has a finite number of rounds implies that the

pictures described above do not really have to be the same for the conclusion

to hold.
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The Distance k-round Ehrenfeucht Game DEHR(H1, H2; k) on hyper-

graphs H2 and H2 is the game EHR(H1, H2; k) with the additional require-

ment that for Duplicator to win, she must assure that the distances between

corresponding marked vertices are preserved.

We say the a-neighborhoods of x and y are k-similar if Duplicator has a

winning strategy for the Distance Ehrenfeucht Game in those neighborhoods

that begins with x and y marked and has k additional rounds.

Let x1, . . . , xu ∈ H1 and y1, . . . , yu ∈ H2 and call these the marked ver-

tices. The a-picture of x1, . . . , xu splits into connected components C1, . . . , Cr

as does the a-picture of y1, . . . , yu into D1, . . . , Dr′ . Suppose that r = r′ and

that under a suitable renumbering, Ci and Di contain corresponding marked

vertices.

(2.15) Definition. We say that the above a-pictures are s-similar if, in

addition to the above conditions, for all pairs of components Ci and Di,

duplicator has a winning strategy for the Distance Ehrenfeucht Game that

begins with the xl ∈ Ci and yl ∈ Di marked and has s additional rounds.

Now we can give a powerful extension of the above result.

(2.16) Proposition. Set a = 3k−1
2

. Suppose H1 and H2 have vertex subsets

S1 ⊆ H1 and S2 ⊆ H2 with the following properties:

(a) S1 and S2 have k-similar a-neighborhoods.

(b) Let a′ ≤ a. Let y ∈ H2 with ρ(y, s2) > 2a′ + 1 for all s2 ∈ S2. Let

x1, . . . , xk−1 ∈ H1. Then there is an x ∈ H1 with x, y having k-similar

a′-neighborhoods and such that ρ(x, xi) > 2a′ + 1 for all 1 ≤ i ≤ k − 1

and ρ(x, s1) > 2a′ + 1 for all s1 ∈ S1.

(c) Let a′ ≤ a. Let x ∈ H1 with ρ(x, s1) > 2a′ + 1 for all s1 ∈ S1. Let

y1, . . . , yk−1 ∈ H2. Then there is an y ∈ H2 with x, y having k-similar

a′-neighborhoods and such that ρ(y, yi) > 2a′ + 1 for all 1 ≤ i ≤ k − 1

and ρ(y, s2) > 2a′ + 1 for all s2 ∈ S2.

Then Duplicator has a winning strategy for EHR(H1, H2; k).

Proof. The strategy is analogous to that of Proposition 14.
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2.7
Convergence Laws

Sometimes a zero-one law is too much to ask, so we present a related

weaker concept.

(2.17) Definition. A function p : N → [0, 1] is a convergence law if for all

P ∈ FO the sequence

P(P )(n, p)

converges to a real number in [0, 1].

The convergence laws we will deal with occur when the almost sure theory

Tp is not far from being complete, in the following sense.

Let T be a first order theory of (d+1)-uniform hypergraphs and suppose

we have a collection C = {σ1, σ2, . . .} of first order properties (which is, of

course, at most countable). We say C is a complete set of completions (relative

to T ) if the following conditions hold:

(a) T ∪ {σi} is complete for all i.

(b) For all i 6= j, T |= ¬(σi ∧ σj)

(c) For all i, the limit pi := limn→∞ P(σi) exists.

(d)
∑∞

i=1 pi = 1.

In that case, if H is a hypergraph, and H |= T , then exactly one of the

following possibilities hold:

H |= T ∪ {¬σ1,¬σ2, . . .};

H |= T ∪ {σ1}; H |= T ∪ {σ2}; H |= T ∪ {σ3}; · · ·

Then item 4 above means that the property axiomatizable by the theory

T ∪{¬σ1,¬σ2, . . .}, although not necessarily contradictory, holds almost never.

In case C = {σ1, σ2, . . .} is a complete set of completions for T and

A is an elementary property, let S(A) denote the set of indexes i such that

T ∪ {σi} |= A.

(2.18) Proposition. Under the above conditions, limn→∞ P(A) exists for all

first order properties A and is given by

lim
n→∞

P(A) =
∑
i∈S(A)

pi.
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We again refer the reader to Spencer’s book [2] for a proof.

The next proposition summarizes the above discussion in a way suitable

for proving all the convergence laws we need.

(2.19) Proposition. If Tp admits a complete set of completions then p is a

convergence law.
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3
Zero-One Laws for Dense Hypergraphs

The results and arguments in this chapter are essentially those one can

find in Spencer’s book The Strange Logic of Random Graphs, with minor

adaptations to fit the case of general edge size d+ 1.

In the literature of random structures, Corollary 24 is well known: it was

proved by Y.V. Glebskii, D.I. Kogan, M.I. Liagonkii and V.A. Talanov in 1969

in [6] (and independently in 1976 by R. Fagin in [7]) in the broader context of

purely relational structures.

We get zero-one laws for edge functions that are, in a certain sense, “big”.

As a particular case, all constant functions p will be seen to be zero-one laws.

The strategy exemplifies a procedure that will be used many more times:

explicit examples of almost sure properties will be given. Then the countable

models of these properties will be shown elementarily equivalent, giving the

zero-one law. In the present instance the result is stronger: the almost sure

theories are ℵ0-categorical.

Recall that, for a set S and a natural number k,
(
S
k

)
denotes the collection

of all subsets of S of cardinality k.

Fix r ∈ N and a set S ⊆
({1,2,...,r}

d

)
. The (r, S)-extension property

is the elementary property E(r, S) of (d + 1)-uniform hypergraphs whose

interpretation is

“For all x1, x2, . . . , xr, there exists z /∈ {x1, x2, . . . , xr} such that

σ(z, xi1 , xi2 , . . . , xid)⇔ {i1, i2, . . . , id} ∈ S”.

We call such a z a witness.

For “big” edge functions, all extension statements, with r fixed, hold

almost surely.

(3.1) Proposition. Let p � n−1/(rd)(log n)1/(rd) and 1 − p �
n−1/(rd)(log n)1/(rd). Then, for all S ⊆

({1,2,...,r}
d

)
, the extension statement

E(r, S) holds almost surely.

Proof. Fix vertices x1 . . . xr, S ⊆
({1,2,...,r}

d

)
and z /∈ {x1, x2 . . . xr}.
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Suppose first that p ≥ 1/2. The probability ε that z is a witness for S

satisfies

ε = p|S|(1− p)(
r
d)−|S| � n−1 lnn.

The case p ≤ 1/2 is similar. The probability that there is no such z is

(1− ε)n−r ∼ e−nε � n−r.

As there are only O(n−r) possibilities for the choices of {x1, x2, . . . , xr} and S,

the expected number of configurations without witnesses is o(1). By the first

moment method, almost surely all configurations have at least one witness and

we are done.

(3.2) Corollary. Suppose p � n−ε and 1 − p � n−ε for all positive ε. Then,

for all r ∈ N and S ⊆
({1,2,...,r}

d

)
we have E(r, S) ∈ Tp.

In particular, the theory T =
{
E(r, S) | r ∈ N, S ⊆

({1,2,...,r}
d

)}
is consist-

ent. To get zero-one laws for the above functions p, it is sufficient to show that

T is ℵ0-categorical.

(3.3) Proposition. The theory T =
{
E(r, S) | r ∈ N, S ⊆

({1,2,...,r}
d

)}
is ℵ0-

categorical.

Proof. Let H1 and H2 be countable models of T . Let {x1, x2, . . .} and

{y1, y2, . . .} be enumerations of the vertices of H1 and H2 respectively.

Proceeding by induction, we define bijections a, b : N→ N such that the

function F (xa(i)) = yb(i) is an isomorphism between H1 and H2.

Begin putting a(1) = 1 and b(1) = 1 and suppose defined a(1), . . . , a(r)

and b(1) . . . , b(r). We distinguish two cases:

If r is even, take a(r + 1) ∈ N such that xa(r+1) is the element of

H1 \ {xa(1), xa(2), . . . , xa(r)}

with smallest index. We take the corresponding b(r + 1) such that yb(r+1) is

the witness with smallest index that mimics, over {ya(1), . . . , ya(r)}, all the

incidences of xa(r+1) over {xa(1), . . . , xa(r)}.
The case r odd is similar, interchanging the roles of H1, H2 and a, b.

Each step uses only vertices not previously mentioned, so a and b are

injective. Also, 1 out of every two steps on each side uses the vertex with

smallest index not previously mentioned, so a and b are surjective.

By construction, the restriction of the correspondence xa(i) 7→ yb(i) to

{xa(1), xa(2), . . . , xa(r)} is an isomorphism, and that makes F an isomorphism.
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By the above we have the following.

(3.4) Theorem. If p is a function such that p� n−ε and 1− p� n−ε for all

positive ε, then p is a zero-one law, that is, every elementary property holds

almost surely or almost never. Moreover, the choice of almost surely or almost

never is the same for all such p.

Proof. By Corollary 21 and Proposition 22, the theory T is complete and

T ⊆ Tp, so that Tp is also complete.

As the theory T is the same for every choice of p, we have the “moreover”

part.

The following particular case is worth mentioning.

(3.5) Corollary. All constant functions p ∈ [0, 1] are zero-one laws.

Proof. The cases p ∈ (0, 1) are covered by the above result. If p = 0 then almost

surely the hypergraph has no edges. If p = 1, almost surely the hypergraph is

complete. In any case, the almost sure theory is ℵ0-categorical, so we are done.

Next we get to smaller edge functions p that are zero-one laws.
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4
Big-Bang

4.1
Counting of Butterfly Components

Now we proceed to investigate zero-one and convergence laws in the

early stages of the evolution of Gd+1(n, p). More precisely, we investigate edge

functions before the double jump:

0 ≤ p(n)� n−d.

For functions p in that range, Gd+1(n, p) almost surely has no cycles.

(4.1) Proposition. If 0 ≤ p � n−d then a.a.s. Gd+1(n, p) is acyclic. More

precisely: if C is a fixed finite cycle, then a.a.s. Gd+1(n, p) does not have a

copy of C as a sub-hypergraph.

Proof. Fix a cycle C with v vertices and l edges. Then v ≤ ld. Consider the

expected number E of copies of H in Gd+1(n, p). Then

E ∼ O(nvpl) = o(1)

by the upper bound on p. By the first moment method, a.a.s. there are no

copies of C.

In view of the above, as far as all our present discussions are concerned,

the hypergraphs we deal with are disjoint unions of butterflies. Getting more

precise information on the statistics of the number of connected components

that are finite butterflies of a given order is the most important piece of

information to getting zero-one and convergence laws for p� n−d.

To this end, we define the following random variables. Below δ ∈ ∆, where

∆ is the set of all isomorphism classes of butterflies of order l on v = 1 + ld

labelled vertices.

(4.2) Definition. Aδ(l) is the number of finite butterflies of order l and

isomorphism class δ in Gd+1(n, p).
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A butterfly of order l is, in particular, a hypergraph on v = 1+ld vertices.

Let cδ(l) be the number of butterflies of order l and isomorphism class δ on

v = 1 + ld labelled vertices. To each set S of v vertices on Gd+1(n, p) there

corresponds the collection of indicator random variables X1
S, X

2
S, . . . , X

cδ(l)
S ,

each indicating that one of the potential cδ(l) butterflies of order l and

isomorphism class δ in S is present and is a component. Therefore one has

A(l) =
∑
S,i

X i
S,

where S ranges over all v-sets and i ranges over {1, 2, . . . , c(l)}.
Note that a connected component isomorphic to a butterfly of a certain

isomorphism class is, in particular, an induced copy of that butterfly. Next

we show that the threshold for containment of a butterfly of given order as

a connected component is the same for containing butterflies of that order as

sub-hypergraphs, not necessarily induced.

In the next proposition, the reader may find the condition

p ≤ C(log n)n−d

in 2 rather strange, since it mentions functions outside the scope p � n−d of

the present chapter. The option to putting this more general proposition here

reflects the convenience that it has exactly the same proof and that the full

condition will be used in the next chapter.

(4.3) Proposition. Set v = 1 + ld. The function n−
v
l is a threshold for

containment of butterflies of order l as components. More precisely:

(a) If p � n−
v
l then a.a.s. Gd+1(n, p) has no butterflies of order l as sub-

hypergraphs.

(b) If n−
v
l � p ≤ C(log n)n−d where C < d!

1+ld
then, for any k ∈ N and

δ ∈ ∆, a.a.s. Gd+1(n, p) has at least k connected components isomorphic

the butterfly of order l and isomorphism class δ.

Proof. Let E[Aδ(l)] be the expected value of Aδ(l). One has
(
n
v

)
∼ nv

v!
choices

of a set of v vertices, cδ(l) choices of the butterfly on it, probability pl that

the l vertices of the butterfly exist and probability ∼ (1− p)v(
n
d) ∼ exp[−pv nd

d!
]

that no other edge connects the butterfly to other components. Therefore

E[Aδ(l)] ∼ cδ(l)
nv

v!
pl exp[−pvn

d

d!
].

If p � n
−v
l then E[Aδ(l)] = o(1) and, by the first moment method, we

have 1.
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For 2, suppose n−
v
l � p ≤ C(log n)n−d where C < d!

1+ld
, so that

E[Aδ(l)]→∞.

Let V[Aδ(l)] be the variance of Aδ(l). It suffices to show that

V[Aδ(l)] = o
(
E[Aδ(l)]2

)
.

Indeed, by the second moment method, the above condition implies that almost

surely Aδ(l) is close to its expectation E[Aδ(l)]→∞.

As V[Aδ(l)] = E[Aδ(l)2] − E[Aδ(l)]2 and E[Aδ(l)] → ∞ the above

condition is equivalent to

E[Aδ(l)2] ∼ E[Aδ(l)]2.

We have

E[Aδ(l)2] = E
[(∑

X i
S

)2
]

= E

 ∑
S∩T=∅,i,j

X i
SX

j
T

+ E

 ∑
S∩T 6=∅,i,j

X i
SX

j
T

 .
As eachX i

S indicates the presence of a butterfly as an isolated component,

the second term is zero. But the first term is

∼ (cδ(l))2n
2v

v!2
p2l exp[−2pv

nd

d!
] ∼ E

[
Aδ(l)

]2
,

so we are done.

Further insight on Proposition 27 gives the following.

(4.4) Theorem. If 0 ≤ p� n−(d+1) or there is l ∈ N such that n−
1+ld
l � p�

n−
1+(l+1)d
l+1 then p is a zero-one law.

Proof. If 0 ≤ p � n−(d+1), then almost surely there are no edges. As the

absence of edges is an elementary property, a model of the almost sure theory

in that case is the empty hypergraph in a countable number of vertices. So Tp

is ℵ0-categorical and all edge functions in that range are zero-one laws.

For n−(1+d) � p � n−
1+2d

2 , the countable models of the almost sure

theory have infinite isolated vertices and infinite isolated edges. This makes Tp

ℵ0-categorical so all such p’s are zero-one laws.
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More generally, for n−
1+ld
l � p � n−

1+(l+1)d
l+1 , the countable models of

Tp consist of countably many copies of all butterflies of all orders ≤ l and all

isomorphism classes and nothing else. That makes Tp ℵ0-categorical so these

p’s are zero-one laws.

Let Tl be the first order theory consisting of a scheme of axioms excluding

the existence of cycles and butterflies of order ≥ l+1 and a scheme that assures

the existence of infinite copies of each type of butterflies of order ≤ l. Then Tl

is an axiomatization for Tp, where p is as above.

4.2
Just Before the Double Jump

Consider now an edge function p such that for all ε > 0, n−(d+ε) �
p � n−d (such functions would include, for instance, p(n) = (log n)−1n−d).

The countable models of the almost sure theories for such p’s must be acyclic

and have infinite components isomorphic to butterflies of all orders. But in

this range a new phenomenon occurs: the existence of components that are

butterflies of infinite order is left open. There may or there may not be such

components, and therefore the countable models of Tp are not ℵ0-categorical.

We proceed to show that these infinite components do not matter from

a first-order perspective, as they will be “simulated” by sufficiently large finite

components. Because first-order properties are represented by finite formulae,

with finitely many quantifications, this will establish that all models of Tp are

elementarily equivalent in spite of not being ℵ0-categorical.

4.2.1
Rooted Butterflies

The results we state in this section for rooted butterflies are stated and

proved in Spencer’s book The Strange Logic of Random Graphs for rooted

trees, which are particular cases of butterflies when d = 1. The situation is

similar to that of the last section: the same arguments in that book apply to

the other values of d.

A rooted butterfly is simply a butterfly T (finite or infinite) with one

distinguished vertex R ∈ T , called the root. With rooted butterflies, the

concepts of parent, child, ancestor and descendent are clear: their meaning

is similar to their natural computer science couterparts for rooted trees. The

depth of a vertex is its distance from the root. For each w ∈ T , Tw denotes the

sub-butterfly consisting of w and all its descendants.
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For r, s ∈ N, we define the (r, s)-value of T by induction on r. Roughly

speaking, we examine the r-neighborhood of R and consider any cout greater

than s, including infinite, indistinguishable from each other and call them

“many”. Indeed, the possible (1, s)-values for a rooted tree T are 1, 2, . . . s,M

where M stands for “many”. The (1, s)-value of T is then the number of edges

incident on the root R if this number is ≤ s. Otherwise, the (1, s)-value of T

is M .

Now suppose the concept of (r, s)-value has been defined for all rooted

butterflies and denote by VAL(r, s) the set of all possible such values. Consider

an edge E = {R,w1, . . . , wd} of T incident on the root R. The pattern of E

is the function P : VAL(r, s) → {1, 2, . . . , d} such that, for all values Ω ∈
VAL(r, s), there are exactly P (Ω) elements in the set {Tw1 , . . . , Twd} with

(r, s)-value Ω. Note that

∑
Ω∈VAL(r,s)

P (Ω) = d.

Let PAT(r, s) be the setP : VAL(r, s)→ {1, . . . , d} |
∑

Ω∈VAL(r,s)

P (Ω) = d

 .

In other words, PAT(r, s) is the set of all patterns.

The (r+ 1, s)-value of T is the function V : PAT(r, s)→ {1, 2, . . . , s,M}
such that, for all Γ ∈ PAT(r, s), the root R has exactly V (Γ) edges incident

on it with pattern Γ, with M standing for “many”.

Note that for any value Ω ∈ VAL(r, s) one can easily create a finite rooted

butterfly with value Ω: We simply interpret “many” as s+ 1. Also, any rooted

butterfly can be considered a uniform hypergraph by removing the special

designation of the root.

(4.5) Proposition. Let T1 and T2 be rooted butterflies with roots R1 and R2

respectively which have the same (r, s− 1)-value. Then, considering T1 and T2

as graphs, R1 and R2 have (sd)-similar r-neighborhoods.

Proposition Ã·2.16 gives the following, which can be interpreted as the

formal counterpart of the claim that sufficiently large finite butterflies simulate

the behavior of infinite ones as far as elementary properties are concerned.

(4.6) Proposition. Let H1 and H2 be two acyclic graphs in which every finite

butterfly occurs as a component an infinite number of times. Then H1 and H2

are elementarily equivalent.
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It is convenient to emphasize that, above, H1 and H2 may or may not

have infinite components.

(4.7) Theorem. Suppose p is an edge function satisfying, for all ε > 0,

n−(d+ε) � p� n−d.

Then p is a zero-one law.

Proof. Consider an edge function p such that n−(d+ε) � p� n−d for all ε > 0.

We see that all countable models of Tp satisfy the hypotheses of the above

proposition. Therefore they are elementarily equivalent and these p’s are zero-

one laws.

Let T be the first order theory consisting of a scheme of axioms excluding

the existence of cycles and a scheme that assures that every finite butterfly of

any order appears as a component an infinite number of times. Then T is an

axiomatization for Tp.

4.3
On the Thresholds

So far, we have seen that if p satisfies one of the following conditions

(a) 0 ≤ p ≤ n−(d+1)

(b) n−
1+ld
l � p� n−

1+(l+1)d
l+1 , for some l ∈ N

(c) n−(d+ε) � p� n−d for all ε > 0

then p is a zero-one law.

An L-function p in the range 0 ≤ p � n−d that violates all the above

three conditions must satisfy, for some l ∈ N and c ∈ (0,+∞), the condition

p(n) ∼ c · n−
1+ld
l .

Informally speaking, in that range, an L-function that is not “between”

the thresholds is “on” some threshold. In that case, p is not a zero-one law.

Our next goal is to show that those p’s are still convergence laws

DBD
PUC-Rio - Certificação Digital Nº 0821520/CA



Asymptotic Combinatorial Behavior on Random Hypergraphs 33

4.3.1
Limiting Probabilities on the Thresholds

Let l ∈ N and let T1, T2, . . . , Tu denote the collection of all possible

(up to isomorphism) butterflies of order l and let I be the set of all u-tuples

m = (m1, . . . ,mu) of non-negative integers. Finally, let σm be the elementary

property that there are precisely mi components Ti for i ∈ {1, . . . , u}.

(4.8) Proposition. Let p ∼ c · n− 1+ld
l . Then the collection {σm|m ∈ I} is a

complete set of completions for Tp. In particular, p is a convergence law.

Proof. We show properties 1, 2, 3 and 4 in the definition of a complete set of

completions.

The countable models of Tp ∪ {σm} have no cycles, a countably infinite

number of components of each butterfly of order ≤ l − 1, no sub-hypergraph

isomorphic to a butterfly of order ≥ l + 1 and exactly mi components Ti for

each i. So Tp ∪ {σm} is ℵ0-categorical and, in particular, complete, so we have

property 1.

Tautologically no two of the σm can hold simultaneously, so we have

property 2.

For each i ∈ {1, 2, . . . , u}, let δi be the isomorphism type of Ti. For

notational convenience, set ci := cδi(l) and Ai := Aδi(l). The next lemma

implies properties 3 and 4 and, therefore, completes the proof.

(4.9) Lemma. In the conditions of the above proposition, the random vari-

ables A1, A2, . . . , Au are asymptotically independent Poisson with means λ1 =
c1
v!
cl, λ2 = c2

v!
cl, . . . , λu = cu

v!
cl. That is to say,

pm := lim
n→∞

P(σm) =
u∏
i=1

e−λi
λmii
mi!

.

In particular ∑
m∈I

pm = 1.

Proof. By the method of factorial moments, is suffices to show that, for all

r1, r2, . . . , ru ∈ N we have

E [(A1)r1 · · · (Au)ru ]→ λr1 · · ·λru .

As we have seen, each Ai can be written as a sum of indicator random

variables Ai =
∑

S,j X
i,j
S , each X i,j

S indicates the event Ei,j
S that the j-th of the
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potential butterflies on the vertex set S is present and is a component. Then

E [(A1)r1 · · · (Au)ru ] =
∑

S1,...,Su,j1,...,ju

P[E1,j1
S1
∧ . . . ∧ Eu,ju

Su
].

The above sum splits into
∑

1 +
∑

2 where
∑

1 consists of the terms with

S1, . . . , Su pairwise disjoint. As each X i,j
S indicates the presence of a butterfly

as a component, we have
∑

2 = 0. On the other hand, it is easy to see that if

p ∼ c · n− 1+ld
l then∑

1 ∼
∏

i c
ri
i
nriv

v!
pril exp[−privnd/d!] ∼

∏
i λ

ri , so we are done.

It is worth noting that if ai is the number of automorphisms of the

butterfly whose isomorphism type is δi then one has ci
v!

= 1
ai

.

The convergence laws we got so far provide a nice description of the

component structure in the early history of Gd+1(n, p): it begins empty, then

isolated edges appear, then all butterflies of order two, then all of order three,

and so on untill � n−d, immediately before the double jump takes place.

In what follows, BB stands for “Big-Bang”.

(4.10) Definition. BB is the set of all L-functions p : N → [0, 1] satisfying

0 ≤ p� n−d.

Now it is just a matter of putting pieces together to get the following.

(4.11) Theorem. All elements of BB are convergence laws.

Proof. Just note that any L-function on the above range satisfies one of the

following conditions:

(a) 0 ≤ p ≤ n−(d+1)

(b) n−
1+ld
l � p� n−

1+(l+1)d
l+1 , for some l ∈ N

(c) n−(d+ε) � p� n−d for all ε > 0

(d) p ∼ c · n− 1+ld
l for some constant c ∈ (0,+∞)

It is worth noting that the arguments used in getting zero-one laws for

the intervals

(a) 0 ≤ p ≤ n−(d+1)

(b) n−
1+ld
l � p� n−

1+(l+1)d
l+1 , for some l ∈ N
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(c) n−(d+ε) � p� n−d for all ε > 0

do not require the edge functions to be in Hardy’s class, so all functions inside

those intervals are zero-one laws, regardless of being L-functions.

On the other hand, taking p = c(n)·n− 1+ld
l , where c(n) oscillates infinitely

often between two different positive values is sufficient to rule out a convergence

law for that edge function.

Also, our discussion implies that, in a certain sense, most of the functions

in BB are zero-one laws: the only way one of that functions can avoid this

condition is being inside one of the countable windows inside a threshold of

appearence of butterflies of some order.

In the next chapter, similar pieces of reasoning will yield an analogous

result for another interval of edge functions.
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5
Big-Crunch

The present chapter is devoted to getting a result analogous to Theorem

35 on another interval of edge functions, immediately after the double jump.

We call that interval BC, for Big-Crunch, because, informally, when “time”

(the edge functions p) flows forth, the behavior of the complement of the giant

component is the same of the behavior Gd+1(n, p) assumes in the Big-Bang BB

with time flowing backwards.

More concretely, BC is the set of L-functions p satisfying n−d � p �
n−d+ε for all ε > 0. An important function inside this interval is p = (log n)n−d

which will be seen, in the next chapter, to be the threshold for Gd+1(n, p) to

be connected. In the subintervals n−d � p � (log n)n−d and (log n)n−d �
p � n−d+ε, nothing interesting happens in the first order perspective. This

will imply that these intervals are entirely made of zero-one laws.

Inside the window p ∼ C · (log n)n−d (with C some positive constant),

very much the opposite is true: here we find an infinite collection of thresholds

of elementary properties and also an infinite collection of zero-one and conver-

gence laws.

5.1
Just Past the Double Jump

Consider the countable models of the almost sure theory Tp with

n−d � p� (log n)n−d.

As we have already seen, in that range we still have components iso-

morphic to all finite butterflies of all orders and the possibility of infinite but-

terflies is still open. The threshold for the appearance of small sub-hypergraphs

excludes the possibility of bicyclic (or more) components. By the same reason,

we have components with cycles of all types. The following shows, in particular,

that vertices of small degree do not occur near the cycles.

(5.1) Proposition. Suppose p � n−d. Let H be a finite connected configur-

ation with at least one cycle and at least one vertex of small degree. Then
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the expected number of such configurations in Gd+1(n, p) is o(1). In particular

a.a.s. there are no such configurations.

Proof. Let the configuration H have v vertices and l edges. As H is connected

and has at least one cycle, we have v ≤ ld. For convenience, set α = pnd

d!
. Note

that α→ +∞. Let E be the expected number of configurations H. Then

E = O

(
nv

v!
pl(1− p)

nd

d!

)
= O

(
nv

v!
pl exp[−pn

d

d!
]

)
=

= O

(
ndlpl exp[−pn

d

d!
]

)
t = O

(
αl exp[−α]

)
= o(1).

The “in particular” part follows from the first moment method.

Now it is easy to see that the edge functions in the present range are

zero-one laws.

(5.2) Theorem. Suppose p is an edge function satisfying

n−d � p� (log n)n−d.

Then p is a zero-one law.

Proof. By Proposition 36, every vertex in the union of all the unicyclic

components has infinite neighbors. This determines these components up

to isomorphism and it does not pay for Spoiler to play there. But in the

complement of the above set, we have already seen that Duplicator can win

all k-round Ehrenfeucht Games. Therefore all countable models of Tp are

elementarily equivalent and these p are zero-one laws.

We note that the non-existence of vertices of small degree near cycles is

first-order axiomatizable. For each l, s, k ∈ N there is a first order sentence

which excludes all of the (finitely many) configurations with cycles of order

≤ l at distance ≤ s from one vertex of degree ≤ k. Similar considerations

show that the non-existence of bicyclic (or more) components is also first-

order axiomatizable. So one easily gets a simple axiomatization for the almost

sure theories of the above edge functions.
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5.2
Beyond Connectivity

Now we consider countable models of Tp with

(log n)n−d � p� n−d+ε

for all positive ε.

Again, the thresholds for appearance of small sub-hypergraphs imply

that, in this range, we have all cycles of all types as sub-hypergraphs, and no

bicyclic (or more) components. Now all vertices of small degree are gone.

(5.3) Proposition. For p � (log n)n−d, the expected number of vertices of

small degree in Gd+1(n, p) is o(1). In particular, a.a.s. there are no vertices of

small degree.

Proof. Fix a natural number k and let E be the expected number of vertices

of degree k in Gd+1(n, p). Then

E ∼ n(1− p)
nd

d! ∼ n exp

[
−pn

d

d!

]
= o(1).

(5.4) Theorem. Let p be an edge function satisfying

(log n)n−d � p� n−d+ε

Then p is a zero-one law.

Proof. The countable models of Tp have components that contain cycles of all

types, no bicyclic (or more) components and may possibly have butterfly com-

ponents. As no vertex can have small degree, all vertices in that components

have infinite neighbors, so these components are unique up to isomorphism.

But Tp is not ℵ0-categorical since the existence of butterfly components is left

open. Proposition Ã·2.16 gives that these models are elementarily equivalent,

so these p are zero-one laws.

The discussion on the proof of theorem Ã·5.4 also gives simple axiomat-

izations for the almost sure theories of the above p.

At this point, it is convenient to note a curious fact. We will see, in the

next chapter, that if p� (log n)n−d then Gd+1(n, p) is almost surely connected.

But the countable models of the almost sure theory Tp, described above, are

obviously not connected. The solution to this paradox is the fact that, as we

DBD
PUC-Rio - Certificação Digital Nº 0821520/CA



Asymptotic Combinatorial Behavior on Random Hypergraphs 39

have already seen, connectivity is not an elementary property. Indeed, this

paradox can be seen as another way of proving this fact.

5.3
Marked Butterflies

Now we are left to the case of L-functions p comparable to n−d log n. In

other words, to complete our discussion, we must get a description of what

happens when an edge function p is such that ndp/ log n tends to a finite

constant C 6= 0.

In the last chapter, the counting of the connected components isomorphic

to butterflies was the fundamental piece of information in the arguments

that implied all the convergence laws we found there. Copies of butterflies

as connected components are, in particular, induced such copies.

It turns out that the combinatorial structure whose counting is funda-

mental to getting the convergence laws in the window p ∼ C · logn
nd

is still that

of butterflies, but now the copies are not necessarily induced. Instead, some

vertices receive markings, meaning that those vertices must have no further

neighbors than those indicated on the “model” butterfly. On the non-marked

vertices no such requirement is imposed: they are free to bear further neighbors.

These copies of butterflies are then, in a sense, “partially induced”.

(5.5) Definition. Let v∗, l ∈ N. A v∗-marked l-butterfly is a finite connected

(Berge)-acyclic hypergraph with l edges and with v∗ distinguished vertices,

called the marked vertices.

Note that a v∗-marked l-butterfly is a hypergraph on v = 1 + ld vertices.

(5.6) Definition. Let B be a v∗-marked l-butterfly and H be a hypergraph. A

copy of B in H is a (not necessarily induced) sub-hypergraph of H isomorphic

to B where if w is a marked vertex of B and w′ is the corresponding vertex of

H under the above isomorphism, then w and w′ have the same degree.

An edge of a Berge-acyclic hypergraph incident to exactly one other edge

is called a leaf.

(5.7) Definition. A v∗-marked l-butterfly is called minimal if every leave has

at least one marked vertex.

Now, the most important concept to understanding the zero-one and

convergence laws on BC is the counting of minimal marked butterflies.

(5.8) Definition. Let Γ be the finite set of all isomorphism types of minimal

v∗-marked l-butterflies on 1+ ld labelled vertices and fix γ ∈ Γ. Then c(l, v∗, γ)
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is the number of possible v∗-marked l-butterflies of isomorphism type γ on 1+ld

labelled vertices.

(5.9) Definition. The random variable A(l, v∗, γ) is the number of copies of

v∗-marked l-butterflies of isomorphism type γ in Gd+1(n, p).

5.3.1
Counting of Marked Butterflies

Now we use the first and second moment methods to get precise inform-

ation on the counting of minimal marked butterflies for edge functions on the

range

p ∼ C · log n

nd
, C > 0.

Rather informally, when the coefficient of logn
nd

in p avoids the rational

value d!
v∗

then the expected number of v∗-marked butterflies is either 0 or ∞.

The first moment method implies that, in the first case, a.a.s. there are no v∗-

marked butterflies. The second moment method will yield that, in the second

case, there are many such minimal marked butterflies.

If C = d!
v∗

, then knowledge of more subtle behavior of the edge function is

required: we are led to consider the coefficient ω of log logn
nd

in p. If this coefficient

avoids the integer value l then the expected number of v∗-marked l-butterflies

is either 0 or∞. Again, first and second moment arguments imply that, in the

first case, the number of such butterflies is a.a.s. zero and, in the second case,

the number of such minimal butterflies is very large.

Finally, if ω = l, then knowledge of even more subtle behavior of the edge

function is required: we consider the coefficient c of 1
nd

in p. If this coefficient

diverges, then the expected number of v∗-marked l-butterflies is either 0 or ∞
and, again, first and second moment methods imply that the actual number of

such butterflies is what one expects it to be.

All above cases give rise to zero-one laws. The remaining case is the one

when the coefficient c converges. In this case, the fact that the almost sure

theories are almost complete will yield convergence laws.

First Moment Analysis of Marked Butterflies

Let p = p(n) be comparable to logn
nd

. That is, let ndp
logn

converge to a

constant C 6= 0.

(5.10) Proposition. Fix γ ∈ Γ.

(a) If C < d!
v∗

then E[A(l, v∗, γ)]→ +∞.
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(b) If C > d!
v∗

then E[A(l, v∗, γ)]→ 0 for all l ∈ N.

In particular, if C > d!
v∗

then, for any l ∈ N, a.a.s. A(l, v∗, γ) = 0.

Proof. Set c = c(l, v∗, γ) and v = 1 + ld.

Note that pv∗ n
d

d!
∼ Cv∗ logn

d!
so pv∗ n

d

d!
− Cv∗ logn

d!
= o(1) log n. Therefore

one has

E[A(l, v∗, γ)] ∼ c
nv

v!
pl(1− p)v∗

nd

d!

∼ c
nv

v!
pl exp

[
−pv∗n

d

d!

]
∼ c

nv

v!
pl exp

[
o(1) log n− Cv∗ log n

d!

]
∼ c

nv

v!
(C log n)ln−ld exp

[
o(1) log n− Cv∗ log n

d!

]
∼ c

v!
(C log n)ln1−Cv

∗
d!

+o(1),

and the result follows.

The “in particular” part follows from the first moment method.

Now consider p ∼ d!
v∗
· logn

nd
so that v∗nd p

d!
− log n = o(1) log n and let

ω(n) =
v∗nd p

d!
− log n

log log n
.

(5.11) Proposition. Fix l ∈ N and ε > 0.

(a) If eventually ω < l − ε then E[A(l, v∗, γ)]→ +∞

(b) If eventually ω > l + ε then E[A(l, v∗, γ)]→ 0.

In particular, the second condition implies that a.a.s. A(l, v∗, γ) = 0.

Proof. Set c := c(l, v∗, γ) and v := 1 + ld.

Note that

v∗nd
p

d!
= log n+ ω log log n

so one has
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E[A(l, v∗, γ)] ∼ c

v!
nvpl(1− p)v∗

nd

d!

∼ c

v!
nvpl exp

[
−pv∗n

d

d!

]
∼ c

v!
nvpl exp[− log n− ω log log n]

∼ c

v!
nv
(
d!

v∗
log n

)l
n−ldn−1(log n)−ω

∼ c

v!

(
d!

v∗

)l
(log n)l−ω,

and the result follows.

The “in particular” part follows from the first moment method.

Now consider the case ω → l ∈ R and let

c(n) := p
ndv∗

d!
− log n− l log log n.

(5.12) Proposition. Fix γ ∈ Γ and c = c(n) as above.

(a) If c→ −∞ then E[A(l, v∗, γ)]→ +∞

(b) If c→ +∞ then E[A(l, v∗, γ)]→ 0.

In particular, the second condition implies that a.a.s. A(l, v∗, γ) = 0.

Proof. Note that pn
dv∗

d!
= log n+ l log log n+ c(n), so

E[A(l, v∗, γ)] ∼ c(l, v∗, γ)

v!
nvpl(1− p)v∗

nd

d!

∼ c(l, v∗, γ)

v!
nvpl exp

[
−pv∗n

d

d!

]
∼ c(l, v∗, γ)

v!
nvpl exp[− log n− l log log n− c(n)]

∼ c(l, v∗, γ)

v!

(
d!

v∗

)l
exp[−c(n)],

and 1 and 2 follow.

The “in particular” part follows from the first moment method.
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Second moment analysis of marked butterflies

Fix, in Gd+1(n, p), a vertex set S of size |S| = 1 + ld and γ ∈ Γ. To each

of the c := c(l, v∗, γ) potential copies of v∗-marked l-butterflies of type γ in S

there corresponds the random variable Xα, the indicator of the event Bα that

this potential copy is indeed there in Gd+1(n, p). Then we clearly have

A(l, v∗, γ) =
∑
α

Xα.

We write |Xα| := S.

(5.13) Proposition. Let p ∼ C · logn
nd

, where d!
v∗+1

< C < d!
v∗

. Then, for any

k, l ∈ N, we have

P[A(l, v∗, γ) ≥ k]→ 1.

Proof. By the first moment analysis, the condition on the hypothesis implies

E[A(l, v∗, γ)]→ +∞ and E[A(l̃, ṽ∗, γ)]→ 0 for all ṽ∗ > v∗ and any l̃ ∈ N. We

use the second moment method. As

E

 ∑
|Xα|∩|Xβ |=∅

XαXβ

 ∼ c2n
2v

v!2
p2l(1− p)2v∗ n

d

d! ∼ E[A(l, v∗, γ)]2

it suffices to show that

E

 ∑
|Xα|∩|Xβ |6=∅

XαXβ

 = o(1).

The sets |Xα| and |Xβ| can only intersect according to a finite number of

patterns, so it suffices to show that the contribution of all terms with a given

pattern is o(1). Set S := |Xα| ∪ |Xβ|.
Consider an intersection type S such that the model spanned by S

contains a cycle. Then the configuration S has a vertex of small degree

(marked) near a cycle. The sum of contributions of all terms with that

intersection type is ∼ the expected number of such configurations. As there is

a vertex of small degree near a cycle, this is o(1) by proposition 35.

If the type of S has no cycles, then S is a maked butterfly with ṽ∗ ≥ v∗

marked vertices.

If ṽ∗ > v∗ then, by the first moment analysis, the sum of contributions

of those terms is o(1).
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We claim that there are no terms with ṽ∗ = v∗. Indeed, if that were the

case, by minimality, all edges would be in the intersection and so the events

indicated by Xα and Xβ would be the same, a contradiction.

Now consider p ∼ d!
v∗
· logn

nd
and, as above, let

ω(n) =
v∗nd p

d!
− log n

log log n
.

(5.14) Proposition. Fix ε > 0 and l ∈ N.

(a) If eventually ω < l − ε then for any k ∈ N, we have

P[A(l, v∗, γ) ≥ k]→ 1

(b) If ω → +∞ then for any k, l̃ ∈ N, we have

P[A(l̃, v∗ − 1, γ̃) ≥ k]→ 1

for all isomorphism types γ̃ of minimal (v∗ − 1)-marked l̃-butterfliies.

Proof. The proof of 1 is the same as the proof of the above proposition.

The proof of 2 is analogous, noting that condition 2 implies that the

expected number of v∗-marked butterflies with any fixed number of edges is

o(1), so that the intersection pattern must have all the v∗− 1 marked vertices.

Now consider the case ω → l and, as above, let

c(n) =
pndv∗

d!
− log n− l log log n.

Finally, the same reasoning used in the proofs of the two above proposi-

tions demonstrates the following.

(5.15) Proposition. If c→ −∞ then P[A(l, v∗, γ) ≥ k]→ 1 for any k ∈ N.
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5.4
Zero-one laws between the thresholds

Now we consider the countable models of the almost sure theories Tp for

p “between” the critical values above.

(5.16) Theorem. Let p be an edge function satisfying one of the following

properties:

(a) p ∼ C · logn
nd

, where d!
v∗+1

< C < d!
v∗

for some d, v∗ ∈ N.

(b) p ∼ d!
v∗
· logn

nd
where ω → ±∞ or ω → C where l − 1 < C < l for some

l ∈ N.

Then p is a zero-one law.

Proof. Consider, first, a function p ∼ C · logn
nd

, where

d!

v∗ + 1
< C <

d!

v∗
.

We consider the models of the almost sure theory Tv∗ := Tp. In that range, we

still have no bicyclic (or more) components in the first-order perspective. As

there are no vertices of small degree near cycles, the unicyclic components are

determined up to isomorphism. Also we still have infinitely many copies of each

cycle. So the union of connected components containing cycles are determined

up to isomorphism and Duplicator does not have to worry about them: every

time Spoiler plays there, he has wasted a move.

So let us consider the butterfly components. By the first and second

moment analysis above, we have no components containing (v∗ + 1)-marked

butterflies and have infinite components containing copies of each minimal

v∗-marked butterfly. Each component containing a v∗-marked butterfly is

determined up to isomorphism: each non-marked vertex must have infinite

neighbors.

Let l ∈ N such that 1+ ld ≤ v∗ < v∗+1 ≤ 1+(l+1)d. Then there are no

butterflies of order l+ 1 (or more) as sub-hypergraphs and there are infinitely

many components isomorphic to each butterfly of order ≤ l. Therefore, the

union of the components isomorphic to finite butterflies is determined up to

isomorphism.

Tv∗ is not ℵ0-categorical, though, since in that countable models, there

may or may not be components containing ṽ∗-marked butterflies with ṽ∗ < v∗.

(This includes the degenerate case ṽ∗ = 0: there may or may not be infinite

butterflies where all vertices have infinite neighbors) These components are

“simulated” by components containing v∗-marked vertices, with v∗− ṽ∗ marked
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vertices suitably far from the neighborhood of the ṽ∗ marked vertices, this

neighborhood being a copy of the ṽ∗-marked butterfly one wants to simulate.

More precisely, it is clear that the countable models of Tp satisfy the

hypothesis of Proposition Ã·2.16, so they are pairwise elementarily equivalent

and, hence, Tv∗ is complete and the corresponding p are zero-one laws.

Now consider p ∼ d!
v∗
· logn

nd
and, as above, let

ω(n) =
v∗nd p

d!
− log n

log log n
.

If ω → −∞ then the first and second moment analysis above imply that

the countable models of Tp are the same as the countable models of Tv∗ and,

as Tv∗ is complete, p is a zero-one law.

If ω → +∞ then the first and second moment analysis above imply that

the countable models of Tp are the same as the countable models of Tv∗−1.

But the latter theory is complete and, hence, the corresponding p are zero-one

laws.

If ω → C, with l − 1 < C < l, then the countable models of T lv∗ := Tp

are the same as the countable models of Tv∗ but without the components with

marked butterflies of order ≤ l − 1. These models are, for the same reasons,

still pairwise elementarily equivalent, so we have that the corresponding p are

zero-one laws.

Finally, consider the case ω → l and, as above, let

c(n) =
pndv∗

d!
− log n− l log log n.

If c → −∞, then the analysis above show that the countable models of

Tp are the same as the countable models of T lv∗ , so these p are zero-one laws.

If c → +∞, then the analysis above show that the countable models of

Tp are the same as the countable models of T l−1
v∗ , so these p are also zero-one

laws.

5.5
Axiomatizations

At this point, it is clear that the arguments given in the last section

actually give axiomatizations for the almost sure theories presented there.

More formally, let the theory T (v∗) consist of a scheme of axioms saying

that there are no bicyclic (or more) components, a scheme of axioms saying that

there are no copies of ṽ∗-marked butterflies for each ṽ∗ > v∗ and a scheme of
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axioms saying that there are infinitely many copies of each minimal v∗-marked

butterfly.

Similarly, let the theory T (v∗, l) consist of a scheme of axioms saying that

there are no bicyclic (or more) components, a scheme of axioms excluding the

ṽ∗-marked butterflies for each ṽ∗ > v∗, a scheme of axioms saying that there

are no v∗-marked butterflies of order ≤ l− 1 and an scheme saying that there

are infinitely many copies of each minimal v∗-marked butterfly not excluded

by the last scheme.

By the discussion found in the last section, we have the following:

(5.17) Theorem. The theory T (v∗) is an axiomatization for Tv∗ and, simil-

arly, the theory T (v∗, l) is an axiomatization for T lv∗.

5.6
On the thresholds

The only way an L-function can avoid all of the clauses discussed above

is the possibility that c(n) converges to a real number c. That is to say, we

must consider the possibility that

p =
d!

v∗
· log n+ l log log n+ c(n)

nd

where c(n)→ c.

We will see, in the present chapter, that these p, although not zero-one

laws, are still convergence laws. The situation is analogous to that of the last

chapter: on these thresholds, the almost sure theories Tp are almost complete.

5.6.1
Limiting Probabilities on the Thresholds

Let v∗, l ∈ N and let T1, T2, . . . , Tu denote the collection of all possible

(up to isomorphism) v∗-marked butterflies of order l and let I be the set

of all u-tuples m = (m1, . . . ,mu) of non-negative integers. Finally, let σm

be the elementary property that there are precisely mi components Ti for

i ∈ {1, . . . , u}.

(5.18) Proposition. Let p = d!
v∗
· logn+l log logn+c(n)

nd
, where c(n)→ c. Then the

collection {σm|m ∈ I} is a complete set of completions for Tp. In particular,

p is a convergence law.

Proof. We show properties 1, 2, 3 and 4 in the definition of a complete set of

completions.

We claim the countable models of Tp ∪ {σm} are pairwise elementarily

equivalent. Indeed, the complement of the union of components containing
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the v∗-marked butterflies of order l is elementarily equivalent to the countable

models of the theory T l+1
v∗ , defined above. As the latter theory is complete, Tp

is also complete, and we have 1.

Tautologically no two of the σm can hold simultaneously, so we have

property 2.

For each i ∈ {1, 2, . . . , u}, let δi be the isomorphism type of Ti. For

notational convenience, set ci := c(l, v∗, δi) and Ai := A(l, v∗, δi). The next

lemma implies properties 3 and 4 and, therefore, completes the proof.

(5.19) Lemma. In the conditions of the above proposition, the random vari-

ables A1, A2, . . . , Au are asymptotically independent Poisson with means

λi =
ci
v!

(
d!

v∗

)l
e−c.

That is to say,

pm := lim
n→∞

P(σm) =
u∏
i=1

e−λi
λmii
mi!

.

In particular ∑
m∈I

pm = 1.

Proof. By the method of factorial moments, is suffices to show that, for all

r1, r2, . . . , ru ∈ N we have

E [(A1)r1 · · · (Au)ru ]→ λr1 · · ·λru .

As we have seen, each Ai can be written as a sum of indicator random

variables Ai =
∑

S,j X
i,j
S , each X i,j

S indicates the event Ei,j
S that the j-th of the

potential copies of v∗-marked l-butterflies on the vertex set S is present. Then

E [(A1)r1 · · · (Au)ru ] =
∑

S1,...,Su,j1,...,ju

P[E1,j1
S1
∧ . . . ∧ Eu,ju

Su
].

The above sum splits into
∑

1 +
∑

2 where
∑

1 consists of the terms with

S1, . . . , Su pairwise disjoint. It is easy to see that if p = d!
v∗

logn+l log logn+c(n)
nd

then
∑

1 ∼
∏

i λ
ri .

Arguing as in Proposition 45, one sees that the contribution of each of

the terms in
∑

2 with a given pattern of intersection is o(1). Hence
∑

2 = o(1)

and we are done.
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These pieces together prove the following.

(5.20) Theorem. All elements in BC are convergence laws.

Proof. Just note that all L-functions on the above range must satisfy, with the

familiar definitions of ω(n) and c(n), one of the following conditions:

(a) n−d � p� (log n)n−d

(b) (log n)n−d � p� n−d+ε for all positive ε

(c) p ∼ C · logn
nd

, where d!
v∗+1

< C < d!
v∗

for some d, v∗ ∈ N .

(d) p ∼ d!
v∗
· logn

nd
where ω → ±∞ or ω → C where l − 1 < C < l for some

l ∈ N

(e) ω → l ∈ N and c(n)→ ±∞ or c(n)→ c ∈ R.

As it was the case in the last chapter, it is worth noting that the

arguments used in getting zero-one laws for the clauses 1, 2 and 3 do not

require the edge functions to be in Hardy’s class, so all functions inside those

intervals are zero-one laws, regardless of being L-functions.

On the other hand, taking ω(n) oscillating infinitely often between two

constant values ω1 < l and ω2 > l makes the probability of an elementary

event oscillate between zero and one. Similarly, taking c(n) oscillating between

any two different positive values makes the probability of an elementary event

oscillate between two different values /∈ {0, 1}. Obviously, these situations rule

out convergence laws.

As it was the case with BB, our present discussion implies that, in a

certain sense, most of the functions in BC are zero-one laws: the only way one

of that functions can avoid this condition is being inside one of the countable

windows inside a threshold for the presence of marked butterflies of some order.
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6
Some elementary approximations

In this chapter we describe some combinatorial aspects of the component

structure of the random hypergraph for p ∼ C logn
nd

that will, later, be used

to get elementary approximations to the non-elementary events Dl. It all

starts by showing that Erdős and Rényi’s threshold for connectivity has a

nice generalization for random hypergraphs.

6.1
Threshold for Connectivity

Now we show that p = d! logn
nd

is a threshold forGd+1(n, p) to be connected.

The 0-statement we already know: if p = C · logn
nd

with C < d!, then a.a.s. there

are many isolated vertices, so Gd+1(n, p) is almost never connected. The 1-

statement is the following.

(6.1) Theorem. Let p(n) = C logn
nd

, where C > d!. Then a.a.s. Gd+1(n, p) is

connected.

Proof. Let a > 0 be such that C > (d+1)!
d+1−ad . The expected number of cuts is

less then or equal to

n/2∑
k=1

(
n

k

)
(1− p)(

n
d+1)−(n−kd+1)−( k

d+1).

This sum is less then or equal to

an∑
k=1

(
n

k

)
(1− p)(

n
d+1)−(n−kd+1)−( k

d+1) +

n/2∑
k=an

(
n

k

)
(1− p)(

n
d+1)−(n−kd+1)−( k

d+1)

so it suffices to show that the two latter sums are o(1).

The first sum is less than or equal to
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an∑
k=1

nk exp

{
− p

(d+ 1)!

[
nd+1 − (n− k)d+1 − kd+1

]}
≤

an∑
k=1

nk exp

{
− p

(d+ 1)!

[
k(d+ 1)nd + o(nd)− kd+1

]}
≤

an∑
k=1

nk exp

{
− pk

(d+ 1)!

[
(d+ 1)nd + o(nd)− (k − 1)d

]}
≤

an∑
k=1

nk exp

{
− pk

(d+ 1)!

[
(d+ 1)nd + o(nd)− (an− 1)d

]}
≤

an∑
k=1

nk exp

{
− Ck log n

(d+ 1)!nd
[
(d+ 1)nd + o(nd)− (an− 1)d

]}
≤

an∑
k=1

nk exp

{
−Ck log n

(d+ 1)!

[
(d+ 1) + o(1)− ad)

]}
=

an∑
k=1

exp

{
k log n− Ck log n

(d+ 1)!

[
(d+ 1) + o(1)− ad)

]}
=

an∑
k=1

exp

{
k log n

[
1− C

(d+ 1)!

(
(d+ 1) + o(1)− ad

)]}
.

By the choice of a, there is M > 0 such that, for sufficiently large n, the

latter sum is less than or equal to

an∑
k=1

exp {−Mk log n} .

But we have

an∑
k=1

exp {−Mk log n} ≤
an∑
k=1

n−Mk ≤ n−M

1− n−M
= o(1).

The second sum is less than or equal to

n/2∑
k=an

2n exp

{
−p
[(

n

d+ 1

)
−
(
n− k
d+ 1

)
−
(

k

d+ 1

)]}
.

The log of the summand is
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n log 2− C log n

(d+ 1)!nd
[
nd+1 − (n− k)d+1 − kd+1

]
≤ n log 2− Cn log n

(d+ 1)nd

[
(n− 1)d −

(
1− k

n

)
(n− k − 1)d − k

n
(k − 1)d

]
≤ n log 2− Cn log n

(d+ 1)nd

[
(n− 1)d −

(
1− k

n

)
(n− 1)d − k

n
(n/2− 1)d

]
≤ n log 2− Cn log n

(d+ 1)nd

[
k

n

(
nd + o(nd)

)
− k

n

(
nd

2d
+ o(nd)

)]
≤ n log 2− Cn log n

(d+ 1)

[
k

n

(
1− 1

2d

)
+ o(1)

]
≤ n log 2− Cn log n

(d+ 1)

[
a

(
1− 1

2d

)
+ o(1)

]
This is the log of an individual summand. We have at most n terms, so

the sum is less then or equal to

exp

{
log n+ n log 2− Cn log n

(d+ 1)

[
a

(
1− 1

2d

)
+ o(1)

]}
and this is o(1) as the n log n term overwhelms all others.

6.2
Component Structure on BC

It is possible to explore the information we have until now and, particu-

larly, the arguments in the last section, to get more precise information on the

component structure of Gd+1(n, p) for p ∈ BC.

(6.2) Lemma. Let E1 be the event that there is a sub-hypergraph isomorphic

to a butterfly with l + 1 edges and E2 the event that there is no connected

component isomorphic to a butterfly on l edges.

Then, for p = p(n) ≤ C logn
nd

, with C < d!
1+ld

, the probability of the event

E1 ∧ E2 is o(1).

Proof. Fix a positive real α such that 1+(l+1)d
l+1

< α < 1+ld
l

and consider two

cases:

If p ≤ n−α then a.a.s. there is no sub-hypergraph isomorphic to a butterfly

with l + 1 vertices.

If p ≥ n−α then a.a.s. there is a connected component isomorphic to a

butterfly with l vertices.
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(6.3) Definition. The random variable µ is the number of vertices outside the

largest connected component of Gd+1(n, p).

The last part of the argument in theorem Ã·6.1 gives the following lemma.

(6.4) Lemma. Let a > 0 and C > 0. Then for p(n) = C logn
nd

one has a.a.s.

µ < an.

Proof. This argument occurs, with virtually no changes, in the last part of the

proof of theorem Ã·6.1, but we repeat it here for the convenience of the reader.

If µ ≥ an then Gd+1(n, p) has a cut with at least an vertices on the

smaller side. The expected number of such cuts is less then or equal to

n/2∑
k=an

(
n

k

)
(1− p)(

n
d+1)−(n−kd+1)−( k

d+1)

which in turn is less than or equal to

n/2∑
k=an

2n exp

{
−p
[(

n

d+ 1

)
−
(
n− k
d+ 1

)
−
(

k

d+ 1

)]}
.

The log of the summand is

n log 2− C log n

(d+ 1)!nd
[
nd+1 − (n− k)d+1 − kd+1

]
≤ n log 2− Cn log n

(d+ 1)nd

[
(n− 1)d −

(
1− k

n

)
(n− k − 1)d − k

n
(k − 1)d

]
≤ n log 2− Cn log n

(d+ 1)nd

[
(n− 1)d −

(
1− k

n

)
(n− 1)d − k

n
(n/2− 1)d

]
≤ n log 2− Cn log n

(d+ 1)nd

[
k

n

(
nd + o(nd)

)
− k

n

(
nd

2d
+ o(nd)

)]
≤ n log 2− Cn log n

(d+ 1)

[
k

n

(
1− 1

2d

)
+ o(1)

]
≤ n log 2− Cn log n

(d+ 1)

[
a

(
1− 1

2d

)
+ o(1)

]
This is the log of an individual summand. We have at most n terms, so

the sum is less then or equal to

exp

{
log n+ n log 2− Cn log n

(d+ 1)

[
a

(
1− 1

2d

)
+ o(1)

]}
and this is o(1) as the n log n term overwhelms all others.
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(6.5) Theorem. Let p ∼ C logn
nd

where C is a constant such that C >
d!

1+ld
. Then a.a.s. the random hypergraph Gd+1(n, p) has no sub-hypergraph

isomorphic to a butterfly on l vertices outside the largest connected component.

Proof. Fix positive reals C̃ > C, α < d
1+(l+1)d

and a such that aC̃ < d!
1+ld

.

Let A be the event that there is a sub-hypergraph isomorphic to a

butterfly with l + 1 edges outside the giant component and B the event that

there is a connected component isomorphic to a butterfly on l vertices.

For p in this range, we know that P(B) = o(1). Therefore, it suffices to

show that

P(A) = o(1).

Let µ be the number of vertices outside the giant component and define

m1 = m1(n) to be the natural number m ∈ [0, nα] that maximizes

P(A|µ = m).

Similarly, define m2 = m2(n) to be the natural number m ∈ [nα, an] that

maximizes P(A ∧ ¬B|µ = m). One has

P(A) = P(A ∧B) + P(A ∧ ¬B) ≤ P(B) + P(A ∧ ¬B).

As P(B) = o(1) it suffices to show that P(A ∧ ¬B) = o(1). We have

P(A ∧ ¬B) ≤ P(A ∧ ¬B ∧ µ ≤ nα) + P(A ∧ ¬B ∧ nα ≤ µ ≤ an) + P(µ ≥ an).

We show that the three latter terms are o(1).

The third term is o(1) by lemma Ã·6.4.

For the first one, note that

P(A ∧ ¬B ∧ µ ≤ nα) ≤ P(A ∧ µ ≤ nα)

=
nα∑
m=0

P(µ = m)P(A|µ = m)

≤ P(A|µ = m1).

Note that P(A|µ = m1) is the probability that the random hypergraph

on m1 vertices and probability p(n) has a sub-hypergraph isomorphic to a

butterfly with l + 1 edges, and that this is at most the expected number of
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butterflies with l + 1 edges. So

P(A|µ = m1) = O
[
(log n)n−dm

1+(l+1)d
1

]
= O

[
(log n)nα(1+(l+1)d)−d] = o(1)

by the choice of α.

As for the second term, one has

P(A ∧ ¬B ∧ µ ≥ nα) =
an∑
nα

P(µ = m)P(A ∧ ¬B|µ = m)

≤ P(A ∧ ¬B|µ = m2).

Note that P(A ∧ ¬B|µ = m2) is the probability that the random hyper-

graph on m2 vertices and probability p(n) has a sub-hypergraph isomorphic

to a butterfly on l + 1 vertices and no connected component isomorphic to a

butterfly on l vertices.

It is easy to see that the function n 7→ logn
nd−1 is eventually decreasing, so

that logn
nd−1 ≤ logm2

md−1
2

for sufficiently large n. Moreover, it is obvious that m2 < an.

Putting all together, one has, for sufficiently large n,

p <
C̃ log n

nd
≤ aC̃ · logm2

md
2

<
d!

1 + ld
· logm2

md
2

so that, by Lemma 52 and the fact that m2 →∞, we have

P(A ∧ ¬B|µ = m2) = o(1).

For the reader who feels uneasy about the logic of the above argument,

note, for example, that what is actually been done in the last part is the

construction of a function

m2 7→ p(m2) ∈ [0, 1]

beginning with the image of the funtion m2(n) and completing with values of

p that do not contradict the already existing inequalities. The only reason for

which the sequence

P(A ∧ ¬B|µ = m2(n))
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fails to be a subsequence of

P
[
Gd+1(m2, p(m2)) |= E1 ∧ E2

]
is the fact that it may have repetitions. But, still, it is a sub-net of the

latter sequence, because m2(n) → ∞. As the latter converges to zero, this

suffices to getting the desired conclusion P(A∧¬B|µ = m2(n)) = o(1). Similar

reasonings are needed in the arguments found in the next section but, due to

their cumbersome but trivial nature, we will no longer bother the reader with

such explicit formulations.

Putting all we already know about the existence of butterflies as compon-

ents gives the following theorem, which gives a description of the “disappear-

ance” of the butterfly components as time goes forth in the window p ∼ C logn
nd

.

The butterflies of larger order are incorporated to the giant component before

the butterflies of smaller order, so, outside the giant component, what we see

is the behavior of Gd+1(n, p) in BB but with time flowing backwards.

In all that follows, let

cl(n) =
nd(1 + ld)

d!
p(n)− log n− l log log n.

Notice that, if ω → l, then cl(n) is the usual c(n).

(6.6) Theorem. Let p be such that

lim
n→∞

cl(n) = −∞, lim
n→∞

cl+1(n) = +∞.

Fix k ∈ N.

Then a.a.s. the complement of the largest component of Gd+1(n, p) con-

sists of a disjoint union of butterflies of order at most l and nothing else.

Moreover, for each isomorphism type of each butterfly of order ≤ l, there are

at least k copies of butterflies of that type as components.

6.2.1
Some Estimates for µ

The arguments in the proof of the above theorem can be used to get

upper and lower bounds for µ that are much better than that of Lemma 54.

(6.7) Theorem. Let p ∼ C logn
nd

satisfy

lim
n→∞

cl(n) = −∞.

Fix any function f(n)� n
d

1+ld (log n)−1−ld.
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Then a.a.s. µ > f(n).

Proof. Let A be the event that there is a sub-hypergraph isomorphic to a

butterfly of order l. Then the above condition on p implies P(¬A) = o(1). We

have

P(µ ≤ f(n)) = P(A ∧ µ ≤ f(n)) + P(¬A ∧ µ ≤ f(n))

≤ P(A ∧ µ ≤ f(n)) + P(¬A).

As P(¬A) = o(1), it suffices to show that P(A ∧ µ ≤ f(n)) = o(1). To

this end, let m1 = m1(n) be the natural number m ∈ [0, f(n)] that maximizes

P(A | µ = m). Then

P(A ∧ µ ≤ f(n)) =

f(n)∑
m=0

P(µ = m)P(A|µ = m) ≤ P(A|µ = m1).

Note that P(A | µ = m1) is the probability that the random hypergraph on

m1 vertices and edge probability p(n) has a sub-hypergraph isomorphic to a

butterfly on l vertices and that this is at most the expected number of such

butterflies. Then

P(A|µ = m1) = O
[
(log n)n−dm1+ld

1

]
= O

[
(log n)n−d(f(n))1+ld

]
= o(1)

by the condition on f .

(6.8) Theorem. Let p satisfy

lim
n→∞

cl(n) = +∞.

Fix any function f(n)� n
ld

1+ld (log n)−
l

1+ld .

Then a.a.s. µ < f(n).

Proof. Let A be the event that there is a connected component isomorphic

to a butterfly of order l. Then any of the above conditions on p implies that

P(A) = o(1). Therefore, as above, it suffices to show that

P(¬A ∧ µ ≥ f(n)) = o(1).
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To this end, fix a and let m2 be the natural number m ∈ [f(n), an] that

maximizes P(¬A | µ = m). Then

P(¬A ∧ µ ≥ f(n)) =
an∑

m=f(n)

P(µ = m)P(¬A | µ = m) ≤ P(¬A | µ = m2).

Note that P(¬A | µ = m2) is the probability that the random hypergraph

on m2 vertices and edge probability p(n) has no component isomorphic to a

butterfly on l vertices. But the conditions on f and a imply, for sufficiently

large n,

m
− 1+ld

l
2 � p(n) ≤ d!

1 + ld
· logm2

md
2

.

Therefore P(¬A | µ = m2) = o(1).

6.2.2
Some Elementary Approximations

The description of the structure outside the giant component given in the

above section enables us to get good elementary approximations to the events

Dl. Below we define a class of properties that are, in a sense, asymptotically

very improbable.

(6.9) Definition. I is the set of all properties P of (d+1)-uniform hypergraphs

such that P(P )→ 0 for all L-functions p : N→ [0, 1].

Note that I is an ideal, in that if P1 ⊆ P2 ∈ I then P1 ∈ I. Also, I is

non-trivial, since the tautological event > is not an element of I.

We say two events P1 and P2 are asymptotically equivalent if their

symmetric difference P14P2 is an element of I. In that case we write

P1 ≡ P2 mod I.

Let A be the property that there are no components isomorphic to

butterflies of order l and B the property that the largest component is a

butterfly of order l and all other components are butterflies of order < l.

Then D̃l := A ∨ B is an elementary property and is a good approximation to

the event Dl.

(6.10) Theorem. For all l ∈ N, Dl ≡ D̃l mod I.
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Proof. Note that Dl ⊆ D̃l, so that Dl4D̃l = D̃l \Dl.

First, if p� n−
1+ld
l , then limn→∞ P(Dl) = limn→∞ P(D̃l) = 1.

So suppose, from now on, that p� n−
1+ld
l .

If p satisfies

lim
n→∞

cl(n) = +∞

then limn→∞ P(Dl) = limn→∞ P(D̃l) = 1.

Now suppose p� n−
1+ld
l satisfy

lim
n→∞

cl(n) = −∞.

Then limn→∞ P(Dl) = limn→∞ P(D̃l) = 0.

There are two remaining cases:

(a) p ∼ Cn−
1+ld
l

(b) p = d!
1+ld
· logn+l log logn+c(n)

nd
, where c(n)→ c ∈ R.

In both of them, the almost sure properties we already know to hold in

Gd+1(n, p) easily imply that P(D̃l \Dl)→ 0.

Note that in the non-trivial cases

(a) p ∼ Cn−
1+ld
l

(b) p = d!
1+ld
· logn+l log logn+c(n)

nd
, c(n)→ c ∈ R

Lemmas 4.9 and 5.19 imply, with the notation we find there, that

lim
n→∞

P[Dl] = exp[−
u∑
i=0

λi]

where v = 1+ ld and λi = ci
v!
C l in the first case and λi = cid!

v!v
e−c , in the second,

which is a generalization of Erdős beautiful “double exponential” formula

lim
n→∞

P[G(n, p) is connected] = e−e
−c

for p = logn+c
n

.

The above approximations are global, in the sense that they work for all

ranges of L-functions p. There are other situations in which the approximations

have a more local character, meaning that they work for some specific ranges

of p. Consider, for example, the non-elementary predicate C(x), meaning

that x belongs to the largest connected component of Gd+1(n, p). Then the
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above discussions imply that if p is appropriately large then C(x) is almost

surely equivalent to the predicate C̃l(x), meaning that x does not belong to a

component of order ≤ l. Obviously, C̃l(x) is elementary for all l ∈ N. Formally,

(6.11) Proposition. If p satisfies

lim
n→∞

cl(n) = +∞

then the predicate C(x) is almost surely equivalent to the predicate C̃l(x).
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7
Future Directions

Lynch [8] shows that p(n) = λ/n is a convergence law for G(n, p) if λ > 0

is any constant, so the gap between BB and BC is filled at least in the case

d = 1. It would be interesting to check whether the same situation holds for

the general random hypergraph Gd+1(n, p).

This work has considered zero-one and convergence laws for edge func-

tions p on the ranges p, 1 − p � n−ε for all ε > 0 and p � n−d+ε for all

ε > 0. There are many edge functions outside those ranges and it would be

interesting to study the almost sure theories of some of them so as to get

information about possible convergence laws. For example, Shelah and Spen-

cer, in [9], showed that if α ∈ (0, 1) is an irrational number then p = n−α is

a zero-one law for the binomial random graph G(n, p). So zero-one laws re-

main a frequent appearance outside the considered ranges, at least in the case

d = 1 of random graphs. It is natural to ask whether the functions n−α, for

α ∈ (0, d) \ Q are zero-one laws for Gd+1(n, p). The methods introduced by

Shelah and Spencer seem to apply, with minor modifications in this case, to

give a positive answer to that question.

The fact that all the above irrational powers of n are zero-one laws could

make one wonder whether it would be possible to improve the exponent on

the right hand side of BC = (n−d, n−d+ε) while still getting convergence laws.

Spencer, in [2], shows that if α is any rational number in (0, 1), then n−α fails

to be a convergence law, so the answer is negative at least in the case d = 1 of

random graphs. Again, the methods Spencer introduces seem to apply to the

other values of d to give a negative answer, and, therefore, the exponent in the

right hand of BC is probably the best possible. Still, it would be interesting

to have a complete description of the intervals of L-functions entirely made of

convergence laws.

One could also look for examples of other elementary approximations of

non-elementary properties, as it was the case with Dl and D̃l. An interesting

more challenging project is to describe the asymptotic expressive power of the

first order logic of uniform hypergraphs, that is, the class of all properties P

such that P ≡ P̃ mod I for some elementary property P̃ . For example, if one
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could get a nice description of the elements of the ideal I, then the asymptotic

expressive powers of all classes of properties would also be described.

DBD
PUC-Rio - Certificação Digital Nº 0821520/CA



Bibliography
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